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Indledning

November 2022 var en revolutionerende maned for verden: Prototypen af ChatGPT! for
offentligheden blev lanceret’. Over to méneder voksede antallet af brugere til over 100 millioner
mennesker3, og ChatGPT er i dag et varktej, som bruges eller kan bruges i stort set alle brancher.
ChatGPT er opbygget af neurale netvaerk som reprasenterer en programmeringsmetode, der er
inspireret af biologien og menneskets hjerne, hvilket giver en computer mulighed for at lere fra
observerede data. Disse neurale netverk er inden for de sidste par artier blevet meget populere, da
de er gode til monstergenkendelse. De opnér resultater, som vi i den vildeste fantasi ikke havde turde
habe pd. Nye modeller og strukturer dukker op konstant. Forskellige kreative teknikker afproves,
virker de, s& bruges de. Men for at kunne udvikle og forbedre modellerne er vi nedt til at have en
forstaelse for, hvorfor det virker.

Jeg har hele mit liv vaeret fascineret af kunstig intelligens - is@r nér den bliver praktisk anvendelig.
Det gzlder bade, ndr den optraeder pa internettet og nar den kobles til fysiske genstande, som f.eks.
robotter. Inden for det sidste ars tid har det dog varet matematikken bag neurale netverk, som har
optaget mig. Derfor dette forskerspireprojekt.

Problemformulering og formal

Aktiveringsfunktionerne i neurale netvark spiller en essentiel rolle i forhold til, hvor godt netverket
prasterer og hvor stor en ”Loss”* der forekommer; ” Clearly, the effect of ReLU on the loss landscape
is not yet completely understood. "™

Jeg vil derfor undersoge folgende problemstilling:
Hvordan kan man ved hjeelp af en kvantitativ analyse af losslandskabet for forskellige
aktiveringsfunktioner fd en storre viden om disses pdvirkning pd loss og accuracy.

I den sammenhaeng vil jeg:
- analysere og undersoge losslandskabet for forskellige aktiveringsfunktioner.
- karakterisere losslandskabet, med forskellige kvantitative metrikker, sasom “antal lokale
minima”, “jevnheden af losslandskabet”, “bredde af minima”, samt metoder fra “shape
analysis”.

Jeg héber, 1 forlengelse af ovenstdende, pd at kunne uddrage en mere generel forstdelse for diverse
aktiveringsfunktioner, hvilket maske kan fore til en bedre udnyttelse af funktionernes egenskaber.

Da der imidlertid findes utallige aktiveringsfunktioner, har jeg valgt at afgreense mit forseg til
aktiveringsfunktionerne: ReLU, Leaky-ReLLU og Sigmoid.

1 OpenAi: https://chat.openai.com/

2 (Simonsen, 2023)

3 (Duarte, 2023)

4 Loss er en fagterm for hvor stort tab der er i processen. Senere i projektet benyttes “losslandskab”, som min egen
fordanskning af det engelske ord ”loss landscape”

5 (bosman, engelbrecht, & helbig, 2023)
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Teori

Single perceptron
En single perceptron er bygget op af en neuron, inputs og

outputs.® Inputs, som bliver ganget med en veegt, fodrer x'\
neuronen med data, hvorefter neuronen bearbejder data, og A

1.iwax+b>0

kommer med et output: : B — """L. gF mba—>

m X /v !
Neuronen(x, ...,x,,) = Z(Wi - xi) + bias . / Z

=1 Summation
1= Inputs ~ Weights and Bias Activation

Figur 1: En single perceptron
Summen bliver s kert igennem en aktiveringsfunktion, der
modificerer verdien. Aktiveringsfunktionen er et af de vigtigste led i strukturen og opbygningen af
de neurale netvaerk. Det er aktiveringsfunktionerne som er med til at give en ikke-lineer struktur i
netvaerket, hvilket giver netveerket bedre mulighed for at lere komplekse problemer.

Aktiveringsfunktioner

Pierre Frangois Verhulst udviklede igennem en rakke artikler’ i drene 1838-47 det, som vi i dag
1

1+e™2
alle vaerdier ind mellem 0 og 1. Dette vil 1 visse tilfelde udlese det sdkaldte “vanishing gradient
problem™®, hvor gradienterne vil forsvinde, og dermed vil netvaerket ikke kunne lere. Sigmoid-
funktionen anvendes stadig i nyere tid, dog har den sdkaldte ReLU®: ReLU(z) = {(Z)’ ; Z 8
10) overtaget populariteten og er den mest anvendte funktion i dag. Det er en ikke-lineaer funktion,
1, z>0
0, z<(O
10 jgennem netvarket. Et eksempel pa en alternativ
z, z>0
z-a, z<0
minimal haldning til funktionen. Dette er et forseg pa at lase problemet, ’the dying relu problem
som forekommer, nar inputtet er negativt, hvilket resulterer i at gradienten er nul. Dette vil medvirke
til at netvaerket ikke kan lere.

kender som Sigmoid-funktionen: o(z) = (se bilag 10). Denne ikke-linezre funktion presser

(se bilag

dog er den stadig meget simpel. Nar man finder den afledte til funktionen, vil den vere: {
Dette medferer, at man hurtig kan ’backpropagate

aktiveringsfunktion er leaky-relu funktionen: Leaky_Relu(z) ={ Her tilfores en

»11

6 (Nielsen, 2019)

7 (TARANOVICH, 2019)

8 (Wang, 2019)

% Rectified Linear Unit(ReLU)

10 (Olah, 2015)

11 (lu, Shin, su, & Karniadakis, 2020)

~<>

Qutput
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Strukturen bag et Neuralt Netvaerk

P& figur 2 er der vist et ” multi-layer perceptron”*?, som bestér af
mange enkelte perceptroner, eller mere pracis et fuldt forbundet
ANN?®3 som er opbygget af et inputlayer, et hiddenlayer og et
outputlayer. Nar netverket treenes, skal vagtene som bliver
ganget pa inputtet opdateres. Her bruges en teknik, som hedder
backpropagation®. Da vi i vores tilfalde bruger supervised
learning®® beregner vi et loss mellem outputtet og vores labels.
Labels er vores enskede resultat eller klassifikation. Hvis vi
fodrer netveerket med data og vores enskede resultat er 11, men
netverket getter pa tallet 13 kan vi beregne et loss mellem vores
label og hvad netvarket gettede pa. Cross Entropy Loss'® er en Figur 2: Et fuldt forbundet ANN
metode til at beregne losset pa:

hidden layers

H(t,p) = — 21(s). log(p(s))

Hermed kan vi sa opdatere vagtene og gatte igen. For at opdatere vagtene finder man den partielle
afledte funktion. Dette gores blandt andet ved den sékaldte “keede regel™’ , og hermed kan vi ved en
given learning rate’® og en algoritme!® opdatere vagtene, s man til sidst ender ud med en forhébentlig
lav loss og hej accuracy?.

Convolutional Neural Network

Nér en person f.eks. far vist et billede af en kat, er vedkommende ikke usikker pd hvad billedet
forestiller. Forskellige omrader af vores hjerne bliver aktiveret, nar forskellige komponentprocesser
inden for visuel genkendelse er i gang?. Derfor kan vi skelne mellem en kat og en hund. Dog bliver
det meget sveerere, nér vi skal f& en computer til at gore det samme. Et ANN?2 kan bruges, hvis man
skal treene netverket pd meget sma, sort-hvid-billeder, feks 28x28 pixels. Bliver billederne storre, og
der er forskellige farvekanaler?® | vil dette kreeve en enorm mangde inputs, og dermed ogsa en
dramatisk stigning i antal vaegte. Det er her Convolutional Neural Network (CNN) kommer pa banen.
CNN?* kan best af mange forskellige lag. Hovedsageligt er der tre lag. Et “convolutional” lag (se
bilag 1), pooling lag (se bilag 2) og et fuldt forbundet lag (ANN). Imellem hvert lag er der en
aktiveringsfunktion. Disse aktiveringsfunktioner benyttes konstant, men forstaelsen for deres succes
eller fiasko er stadig genstand for undren.?® Folgende projekt er et forseg pa at udvide forstielsen for
disse funktioner.

(Shah, 2023)

12 (the universal approximation theorem, 2023)

13 Artificial neural network

14 (olah, 2015)

15 (IBM, u.d.)

16 (Shah, 2023)

17 (olah, 2015)

18 (Brownlee, 2020)

19 (Brownlee, 2020)

20 Accuracy: Pa dansk forudsigelse. Hvor mange rigtige geet kom netvaerket med...
21 (Kanwisher, Chun, McDermott, & Ledden, 1996)
22 Artificial Neural Network

23 RGB. Red, Green, Blue. Farvekanal

24 Convolutional neural network

25 (bosman, engelbrecht, & helbig, 2023)
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Metode

Losslandskab

Et netveerk kan besta af flere millioner af parametre. Derfor kan
vi ikke direkte visualisere loss som funktion af parametre. Dog
kan jeg lave en 2d visualisering af et stykke af netvaerket ved at TS :
lave et sikaldt “slice”. Hvis vi har tre punkter, wy, w,, w5, i det .. L (IS,
hgjdimensionelle rum, kan vi lave to vektorer: u = (w,—w;) og ' ol
v = (w3—wj; ). Vi bruger trigonometri til at gore dem ortogonale.
Ved brug af felgende formel (1) kan vi plotte punkterne ind

wl,y)=w,+u-x+v-y (1)

I en udvidelse af dette bruges den sakaldte ’Principal component Figar 3 Eorskelliae slieesal lossanuas
analysis”?’ 28, Et eksempel p et losslandskab ses pa figur 32°. Ud
fra disse losslandskaber vil jeg udfere nogle kvantitative analyser.

Antal lokale minimaer

Nér vi trener et netvaerk, ensker vi at finde det globale minimum. Dog kan netvearket 1 visse tilfelde
ramme et lokalt minimum, hvorved netvarket “tror” det har fundet den bedste lasning. Dette vil
reducere ydeevnen af netvaerket og kan fore til lavere accuracy og hgjere loss. Jo flere lokale
minimaer der findes, jo sterre chance er der for at netverket vil ramme et lokalt minimum 1 stedet for
et globalt minimum. Derfor kan antal af lokale minimaer have indflydelse pd netverkets evne til at
leere. Jeg vil derfor optelle antallet af lokale minimaer, da det kan have en effekt pé losset.

Jeevnhed af losslandskab

Jeg vil ogsa kvantitativt undersege ”jevnheden” af losslandskabet. Jo mere jevnt losslandskabet er,
desto mere generaliserende blive netvarket.3® Dette vil jeg gore ved at beregne forskellen mellem
hver pixel af losslandskabet. Jo mindre forskel der er mellem hver pixel, desto mere jevnt er
landskabet. Jeg kan si plotte disse forskelle og dermed fa en visualisering af hvor jevnt
losslandskabet er.

26 (Izmailov, Garipov, & Wilson, 2018)

27 (Jaadi, 2023)

28 (wikipidea , u.d.)

29 (Visualizing the Loss Landscape of a Neural Network, 2020)
30 (wen, et al., 2018)
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Bredde af minima

Bredden af minimaet er ogsd veasentligt for netverkets
generalisering. Et bredt minimum kan betyde at netvarket er
mere robust 1 forhold til sm& @ndringer 1 parametrene. Et
bredt minimum vil ogsa regulere for andre lokale minimaer.

Et bredt minimum vil vaere lettere at finde og konvergere til

under treening 1 forhold til et smalt minimum. Jeg vil bruge
en sakaldt “Level-set method3!. Level-set metoden gor det
nemmere at hdndtere geometriske former, der @ndrer deres
topologi over tid (se figur 4). Metoden gor det relativt enkelt

at spore og beskrive disse @ndringer, hvilket er nyttigt i Figyr 4: Level-set method
forhold til minimaets udvikling. Jeg kan altsa f4 en bedre

visualisering af minimaet, og jeg kan sd geometrisk

bestemme bredden af minimaet til forskellige tidspunkter.

Shape Analysis

Jeg vil udover ovenstaende metoder prove at generalisere og analysere losslandskaberne ved hjelp af
metoder fra: “Shape Analysis”.®> Her vil jeg kvantitativt beregne et “shape index”®® og
“curvedness™3. Jeg haber pd, at en mere empirisk beskrivelse af losslandskabet kan vere med til at
generalisere og give bedre overblik over de forskellige aktiveringsfunktioners eftektivitet.

Pilotforsgg

Som forarbejde til forseget har jeg lavet et pilotforseg.
Ideen har veret selv at udforme et neuralt netvaerk og
efterfolgende treene det. Formaélet var at teste
aktiveringsfunktionerne: ReLU, Leaky-ReLU og Sigmoid.
Jeg ville sammenligne loss og accuracy mellem
funktionerne, og dette ville give et godt overblik over om
det overhovedet var grundlag for en videre undersogelse.
Jeg kodede mit neurale netvaerk i python med pytorch (Se
bilag 4 og evt fodnote®). Jeg har her benyttet den sékaldte
ConvMLP-s' model. P& figur 5 ses modellen fra
pilotforseget inklusive de forskellige lag. Jeg traenede
netvaerket pa datasattet Cifar-100%. Alle resultaterne kan
ses 1 bilag 5 og 6 samt aktiveringsfunktionerne med

Figur 5: Model ConvMLP-s med Leaky-Relu som aktiveringsfunktion

31 (wikipedia , u.d.)

32 (wikipedia, u.d.)

33 (Koenderink & Doorn, 1992)

34 (Koenderink & Doorn, 1992)

35 Hver af aktiveringsfunktionerne blev tranet i 400 epochs®® med en batch-size® pa 100 og en learning rate pa
henholdsvis: 10™* for Relu og Leaky Relu og 10~ for Sigmoid. Jeg har her benyttet den sdkaldte ConvMLP-s%®
model(se figur 5). Da koden var hardcoded® var jeg nedt til manuelt at omprogrammere koden sé jeg kunne tilfoje de
enskede aktiveringsfunktioner (se bilag 4). Derudover brugte jeg en scheduler: reduceLrOnPlatteau®. Den skulle skulle
senke learningraten med faktor pa 0,1 nar losset ikke var faldeti 15 epochs.

36 (Canadian Institute for Advanced Research, 100 classes): Cifar-100 er et kendt datasaet med 60000 forskellige
billeder hvoraf der er 100 klasser og 20 "super-klasser”. Super klasser er stgrre kategorier. Feks; dyr, mgbler osv...
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forskellige seeds i bilag 7. Nedenfor ses resultaterne for accuracy for hhv. trening og test.

Accuracy vs. Epochs for Different Activation Functions 6 Accuracy vs. Epochs for Different Activation Functions
100 4 —_— — RelU PR
= 70 Leaky RelU
Sigmoid
80 604
50
g 3
c S 404
2 =1
3 3
2 0 g
TRAIN 01 TEST
20 4
20
~—— RelU 104
Leaky RelU
0 Sigmoid 0
o 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Epochs Epochs
Figur 6: Accuracy ved train og test for aktiveringsfunktionerne, ReLU, Leaky-ReLU og Sigmoid. Gennemsnit af 3
forskellige seeds for at regulere for stgj.

Konklusion pa pilotforsag

Ud fra de visualiserede resultater fra pilotforsgget, (Se bilag 5) er det tydeligt at se en forskel pa
ydeevnen for de tre aktiveringsfunktioner. Pa x-aksen har vi Epochs, antal gange vi traener netvaerket
fuldt igennem, og pa y-aksen har vi enten accuracy eller loss. ReLU og Leaky-RelLU klarer sig
betydeligt bedre end Sigmoid-funktionen. De opnar hurtigere og bedre resultater. Inden for 50
epochs har ReLU og Leaky-ReLU allerede ramt +90% accuracy. Hvorimod det tager Sigmoid omkring
300 epochs at na samme resultat. Derudover rammer Sigmoid aldrig samme acurracy som RelLU og
Leaky-ReLU. P3a test-dataszettet hvor funktionerne bliver udsat for data de aldrig har set fgr,
preesterede RelLU og Leaky-RelLU stadig markant bedre (Se bilag 6). Dette kunne derfor tyde pa, at
RelLU og Leaky-RelLU er bedre til at generalisere end Sigmoid funktionen.

Men hvorfor? For at kunne analysere hvorfor ReLU og Leaky-ReLU fungerer bedre er det ngdvendigt
med et stgrre analysearbejde, en stgrre datamaengde og en stgrre computerkraft.

Udfarsel

Nér losslandskabet skal analyseres, er det vigtigt, at det har en tilstrekkelig hoj oplesning. Hvis
oplesningen ikke er god nok, vil der mangle detaljer, sma lokale minimaer, som ikke vil blive
visualiseret. Hver pixel i losslandskabet repreesenterer en epoch. Hvis jeg vil have et losslandskab
med 500x500 pixels skal jeg trene 250000 epochs. Dette skal jeg geore én gang for hver
aktiveringsfunktion. I alt skal jeg derfor trene 750000 epochs. Derfor har jeg brug for en sterk
computer. Jeg vil derfor bruge de 20.000 kr p& Cloud TPU® (se bilag 3 og budget). Alt efter hvor
lang tid det tager at treene én epoch pa Cloud TPU’en, vil jeg regulere opleseligheden af de tre
losslandskaber jeg laver, og dermed reducere antallet af epochs, jeg skal trene.

37 https://cloud.google.com/products/calculator/#id=8c9e8b7d-13d6-46bc-afb7-5c8a7f6104d5
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Budget

Pris Diverse

Cloud TPU Implied price per chip-hour: 8,75 kr | Location: Netherlands

Number of chips: 4 (8 cores)

Total TPU Hours per month: 243
TPU class: Regular

Cloud Storage 144,78 kr Location: lowa

Total Amount of Storage: 1,024 GiB

Total pris 17.319,38 kr Periode: 2 méneder
TPU timer per méaned: 243
I alt 486 timer TPU-tid

Tidsplan

Jeg vil starte med at lave de tre losslandskaber, som visualiseres 1 form af et heatmap. Forventet tid
486 timer. Derpa vil jeg pabegynde den kvantitative undersogelse af losslandskaberne (som beskrevet
1 metodeafsnittet). Jeg vil starte med at optelle antal minimaer, hvorefter jevnheden beregnes.
Derefter vil jeg beregne bredden af det globale minima og preve empirisk at kategorisere landskabet
ved hjelp af shape analysis.

Konklusion

Jeg héber, at jeg ud fra forseget kan vare med til at danne et storre grundlag og forstaelse for hvordan
de forskellige aktiveringsfunktioner fungerer. Hvis det viser sig, at ReLU- og Leaky-ReLU-
funktionerne har ferre lokale minimaer, bredere globale minimaer og er mere jevne, s kunne dette
danne grundlag for videre forskning. Er det muligt at lave nogle aktiveringsfunktioner, som opfylder
de kriterier og fungerer lige s& godt hvis ikke bedre? Derudover vil den sakaldte shape analysis som
bliver lavet ogsd vare med til at kategorisere funktionerne. Til fremtidig forskning kunne man trene
en model pd andre modeller og deres kvantitative resultater ud fra diverse parametre og dermed
komme med bud pé aktiveringsfunktioner inden for forskellige problemer. En form for symbiose.
Dog kraver dette ekstremt mange losslandskaber og data.

Anerkendelse

Jeg vil gerne uddele en stor tak til min forskerkontakt, Kristoffer Stensbo-Smidt, postdoc: Department
of Applied Mathematics and Computer Science (DTU). Derudover vil jeg gerne uddele en tak til min
vejleder Christian Maalgv Andreasen (Svendborg Gymnasium) og de andre forskerspiredeltagere,
som har vaeret med til at motivere og inspirere mig.
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Bilag 1

I "convolutional layer” bruges et sakaldt filter eller kernel til at finde menstre i billedet. Filteret som anvist
pa (Figur 1) har dimensionerne 3x3. Filteret kerer over billedet pixel for pixel og beregner prikproduktet:
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Bilag 2
Pooling layer:

Max Pooling laget er med til at nedskeare billedets storrelse. Et filter med N x N dimensioner kerer over

billedet. Den storste vaerdi bliver udvalgt og hermed nedskaleres billedet.

1220 (30 0
8 (121 2 | 0 | 2x2 Max-Pool | 20|30
34 |70 | 37 | 4 2| 37
112|100 25 | 12
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Bilag 3: Google Cluod TPU

Google Cloud Pricing Calculator - Estimate

Cloud TPU

V2-8

Location: Netheriands

Number of chips: 4 (8 cores)
Total TPU Hours per month: 243
TPU class: Regular

DKK 8,515
Implied price per chip-hour. DKK 8.75

Cloud Storage

1x Standard Storage

Location: lowa
Total Amount of Storage: 1,024 GiB DKK 144.78
Always Free usage included: No

DKK 144.78

Total Estimated Cost: DKK 8,659.69 per 1 month
Estis

DKK - Danish Kroner
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Bilag 4: Kode til mit neurale netveerk. Heriblandt ConvMLP-s model

from torch.hub import load_state_dict_from_url
import torch
from torch.nn import Module, ModuleList, \
Sequential, \
Linear, \
LayerNorm, \
Conv2d, \
BatchNorm2d, \
ReLU,\
LeakyRelLU, \
Sigmoid, \
GELU, \
Identity

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

import torch.nn as nn

def drop_path(x, drop_prob: float = 0., training: bool = False):
Obtained from: github.com:rwightman/pytorch-image-models
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl | created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
if drop_prob == 0. or not training:

return x

keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor

return output
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class DropPath(nn.Module):
Obtained from: github.com:rwightman/pytorch-image-models

Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

def __init_ (self, drop_prob=None):
super(DropPath, self).__init_ ()
self.drop_prob = drop_prob

def forward(self, x):

return drop_path(x, self.drop_prob, self.training)

class ConvStage(Module):
def __init__(self,
num_blocks=2,
embedding_dim_in=64,
hidden_dim=128,
embedding_dim_out=128,
activation=nn.ReLU):
super(ConvStage, self).__init_ ()
self.conv_blocks = ModuleList()
act_fn = activation() if activation == Sigmoid else activation(inplace=True)
for i in range(num_blocks):
block = Sequential(
Conv2d(embedding_dim_in,
hidden_dim,
kernel_size=(1, 1),
stride=(1, 1),
padding=(0, 0),
bias=False),
BatchNorm2d(hidden_dim),
act_fn,#inplace=True
Conv2d(hidden_dim, hidden_dim, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),
BatchNorm2d(hidden_dim),
act_fn,#inplace=True
Conv2d(hidden_dim, embedding_dim_in, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0), bias=False),
BatchNorm2d(embedding_dim_in),
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act_fn#inplace=True
)
self.conv_blocks.append(block)
self.downsample = Conv2d(embedding_dim_in,

embedding_dim_out,
kernel_size=(3, 3),
stride=(2, 2),
padding=(1, 1))

def forward(self, x):
for block in self.conv_blocks:
X = X + block(x)

return self.downsample(x)

class Mip(Module):
def __init__(self,
embedding_dim_in,
hidden_dim=None,
embedding_dim_out=None,
activation=GELU):
super().__init__()
hidden_dim = hidden_dim or embedding_dim_in
embedding_dim_out = embedding_dim_out or embedding_dim_in
self.fc1 = Linear(embedding_dim_in, hidden_dim)
self.act = activation()

self.fc2 = Linear(hidden_dim, embedding_dim_out)

def forward(self, x):

return self.fc2(self.act(self.fc1(x)))

class ConvMLPStage(Module):
def __init__(self,
embedding_dim,
activation,
dim_feedforward=2048,
stochastic_depth_rate=0.1):
super(ConvMLPStage, self).__init_ ()
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self.norm1 = LayerNorm(embedding_dim)
self.channel_mlp1 = MIp(embedding_dim_in=embedding_dim, hidden_dim=dim_feedforward, activation=activation)
self.norm2 = LayerNorm(embedding_dim)
self.connect = Conv2d(embedding_dim,
embedding_dim,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
groups=embedding_dim,
bias=False)
self.connect_norm = LayerNorm(embedding_dim)
self.channel_mlp2 = MIp(embedding_dim_in=embedding_dim, hidden_dim=dim_feedforward, activation=activation)

self.drop_path = DropPath(stochastic_depth_rate) if stochastic_depth_rate > 0 else Identity()

def forward(self, src):
src = src + self.drop_path(self.channel_mlp1(self.norm1(src)))
src = self.connect(self.connect_norm(src).permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
src = src + self.drop_path(self.channel_mlp2(self.norm2(src)))

return src

class ConvDownsample(Module):
def __init__(self, embedding_dim_in, embedding_dim_out):
super().__init__()
self.downsample = Conv2d(embedding_dim_in, embedding_dim_out, kernel_size=(3, 3), stride=(2, 2),

padding=(1, 1))

def forward(self, x):
x = x.permute(0, 3, 1, 2)
x = self.downsample(x)

return x.permute(0, 2, 3, 1)

class BasicStage(Module):
def __init_ (self,
num_blocks,
embedding_dims,

activation,
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mlp_ratio=1,
stochastic_depth_rate=0.1,
downsample=True):
super(BasicStage, self).__init_ ()
self.blocks = ModuleList()
dpr = [x.item() for x in torch.linspace(0, stochastic_depth_rate, num_blocks)]
for i in range(num_blocks):
block = ConvMLPStage(activation=activation,
embedding_dim=embedding_dims[0],
dim_feedforward=int(embedding_dims[0] * mip_ratio),
stochastic_depth_rate=dpr]i],
)
self.blocks.append(block)

self.downsample_mlp = ConvDownsample(embedding_dims[0], embedding_dims[1]) if downsample else |dentity()

def forward(self, x):
for blk in self.blocks:
x = blk(x)
x = self.downsample_mip(x)

return x

class ConvTokenizer(nn.Module):
def __init__(self, embedding_dim=64, activation=nn.ReLU):

super(ConvTokenizer, self).__init_ ()

act_fn = activation() if activation == Sigmoid else activation(inplace=True)

self.block = nn.Sequential(

nn.Conv2d(3,

embedding_dim // 2,
kernel_size=(3, 3),
stride=(2, 2),
padding=(1, 1),
bias=False),

nn.BatchNorm2d(embedding_dim // 2),
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act_fn,
nn.Conv2d(embedding_dim // 2,
embedding_dim // 2,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False),
nn.BatchNorm2d(embedding_dim // 2),
act_fn,
nn.Conv2d(embedding_dim // 2,
embedding_dim,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False),
nn.BatchNorm2d(embedding_dim),
act_fn,
nn.MaxPool2d(kernel_size=(3, 3),
stride=(2, 2),
padding=(1, 1),
dilation=(1, 1))

def forward(self, x):
return self.block(x)

_all__=[ConvMLP', 'convmlp_s', ‘convmlip_m', ‘convmip_I']

model_urls = {
‘convmlp_s": 'https://shi-labs.com/projects/convmip/checkpoints/convmlp_s_imagenet.pth’,
‘convmlp_m": 'https://shi-labs.com/projects/convmlip/checkpoints/convmlp_m_imagenet.pth’,

‘convmlp_l'": 'https://shi-labs.com/projects/convmip/checkpoints/convmip_|_imagenet.pth',

class ConvMLP(nn.Module):
def __init_ (self,
blocks,

dims,
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mlp_ratios,
channels=64,
n_conv_blocks=3,
activation = nn.RelLU,
classifier_head=True,
num_classes=1000,
*args, **kwargs):
super(ConvMLP, self).__init_ ()
assert len(blocks) == len(dims) == len(mlp_ratios), \

f'blocks, dims and mlp_ratios must agree in size, {len(blocks)}, {len(dims)} and {len(mlp_ratios)} passed."

self.activation = activation
self.tokenizer = ConvTokenizer(embedding_dim=channels,activation=activation)
self.conv_stages = ConvStage(n_conv_blocks,

embedding_dim_in=channels,

hidden_dim=dims[0],

embedding_dim_out=dims[0], activation=activation)

self.stages = nn.ModuleList()
for i in range(0, len(blocks)):
stage = BasicStage(num_blocks=blocks]i],
activation=activation,
embedding_dims=dims][i:i + 2],
mlp_ratio=mlp_ratios]i],
stochastic_depth_rate=0.1,
downsample=(i + 1 < len(blocks)))
self.stages.append(stage)
if classifier_head:
self.norm = nn.LayerNorm(dims[-1])
self.head = nn.Linear(dims[-1], num_classes)
else:
self.head = None

self.apply(self.init_weight)

def forward(self, x):
x = self.tokenizer(x)
x = self.conv_stages(x)

x = x.permute(0, 2, 3, 1)
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for stage in self.stages:
x = stage(x)

if self.head is None:
return x

B, _, _, C =x.shape

x = x.reshape(B, -1, C)

x = self.norm(x)

X = x.mean(dim=1)

x = self.head(x)

return x

@staticmethod
def init_weight(m):
if isinstance(m, (nn.Linear, nn.Conv1d)):
nn.init.trunc_normal_(m.weight, std=.02)
if isinstance(m, (nn.Linear, nn.Conv1d)) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
if isinstance(m, nn.Conv2d):
#nn.init.kaiming_normal_(m.weight, mode="fan_out', nonlinearity="relu’)
#nn.init.xavier_normal_(m.weight)
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
else:
raise ValueError(f"No defined weight initialization for {type(m).__name__}")
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1.)

nn.init.constant_(m.bias, 0.)

def _convmlp(arch, activation, pretrained, progress, classifier_head, blocks, dims, mlp_ratios, *args, **kwargs):
model = ConvMLP(activation=activation, blocks=blocks, dims=dims, mlp_ratios=mlp_ratios,
classifier_head=classifier_head, *args, **kwargs)
if pretrained and arch in model_urls:
state_dict = load_state_dict_from_url(model_urls[arch],

progress=progress)
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model.load_state_dict(state_dict)

return model

def convmlp_s(pretrained=False, activation=nn.ReLU, progress=False, classifier_head=True, *args, **kwargs):
return _convmlp(‘convmlp_s',activation=activation, pretrained=pretrained, progress=progress,
blocks=[2, 4, 2], mlp_ratios=[2, 2, 2], dims=[128, 256, 512],
channels=64, n_conv_blocks=2, classifier_head=classifier_head,

*args, **kwargs)

def convmlp_m(activation=nn.ReLU, pretrained=False, progress=False, classifier_head=True, *args, **kwargs):
return _convmlp('convmlp_m', activation= activation, pretrained=pretrained, progress=progress,
blocks=[3, 6, 3], mlp_ratios=[3, 3, 3], dims=[128, 256, 512],
channels=64, n_conv_blocks=3, classifier_head=classifier_head,

*args, **kwargs)

def convmlp_I(activation=nn.RelLU, pretrained=False, progress=False, classifier_head=True, *args, **kwargs):
return _convmlp(‘convmlp_I', activation=activation, pretrained=pretrained, progress=progress,
blocks=[4, 8, 3], mlp_ratios=[3, 3, 3], dims=[192, 384, 768],
channels=96, n_conv_blocks=3, classifier_head=classifier_head,

*args, **kwargs)

model = convmlp_s(activation=LeakyReLU).to(device)

import torch

import numpy as np

import torchvision

import torch.nn as nn

from torchvision import datasets
from torchvision import transforms
import torch.nn.functional as F
from torchsummary import summary
import pandas as pd

import pickle

import matplotlib.pyplot as plt
import numpy as np

from torch.optim import Ir_scheduler
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#transformer
transform = transforms.Compose([
transforms.ToTensor(),

transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))

num_epoch =400
learning_rate = 0.0001 # PA SMALL K@RTE JEG 0.0001 LR
batch_size = 100

train_dataset = torchvision.datasets.CIFAR100(root="./data/', download=True, train=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR100(root="./data/',transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

test_loader = torch.utils.data.DatalLoader(test_dataset, batch_size=batch_size)

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), Ir=learning_rate)

scheduler = Ir_scheduler.ReduceLROnPlateau(optimizer, factor=0.1, patience=15, verbose=True)

loss_values =]
acc_values =]
test_loss_values =]

test_acc_values =]

#42,250,300

torch.manual_seed(300)

np.random.seed(300)

if torch.cuda.is_available():
torch.cuda.manual_seed_all(300)
torch.backends.cudnn.deterministic = True

torch.backends.cudnn.benchmark = False

for epoch in range(num_epoch):
loss_opsamling = 0
n_correct =0
n_samples =0

for i, (image, label) in enumerate(train_loader):
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image = image.to(device)
label = label.to(device)
pred = model(image)

loss = criterion(pred,label)

#backward

optimizer.zero_grad()
loss.backward()
optimizer.step()

loss_opsamling += loss.item()

_, predicted = torch.max(pred, 1)
n_samples += label.size(0)

n_correct += (predicted == label).sum().item()

loss_opsamling = loss_opsamling/(i+1)
acc = 100.0 * n_correct / n_samples
loss_values.append(loss_opsamling)
acc_values.append(acc)
print(f'{epoch}:loss: {loss_opsamling}')
print(f{epoch}:acc: {acc}')

scheduler.step(loss_opsamling)

#test loss og acc
with torch.no_grad():
n_correct =0
n_samples =0
loss_opsamling_test =0
for b, (images, labels) in enumerate(test_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(pred,label)
loss_opsamling_test += loss.item()
# max returns (value ,index)
_, predicted = torch.max(outputs, 1)

n_samples += labels.size(0)
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n_correct += (predicted == labels).sum().item()
acc_test = 100.0 * n_correct / n_samples
loss_opsamling_test = loss_opsamling_test/(b+1)
test_loss_values.append(loss_opsamling_test)

test_acc_values.append(acc_test)

with open('loss_values_leaky_relu.pkl', 'wb') as file:

pickle.dump(loss_values, file)

with open(‘acc_values_leaky_relu.pkl', 'wb') as file:

pickle.dump(acc_values, file)

with open('test_loss_values_leaky_relu.pkl', 'wb') as file:

pickle.dump(test_loss_values, file)

with open('test_acc_values_leaky_relu.pkl', 'wb') as file:

pickle.dump(test_acc_values, file)
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Bilag 5
TRAIN: Gennemsnit af 3 forskellige seeds: se bilag 7,8.,9
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Bilag 6

TEST: Gennemsnit af 3 forskellige seeds: se bilag 7,8,9
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Bilag 7: Sigmoid med forskellige seeds. Bade train og test
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Accuracy vs. Epochs for Different Activation Functions Accuracy vs. Epochs for Different Activation Functions
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Test acc Test acc zoomed
Accuracy vs. Epochs for Different Activation Functions Accuracy vs. Epochs for Different Activation Functions
] 80.
801 —— RelU seedl —— RelU seedl
RelU_seed? s RelU seed?
701 — RelU_seed3 7| —— RelU_seed3
50 4 75.0 -
50 72.5
= >
8 &
S a0 A 5 70.0 4
o o
< k"
30 1 67.5
20 4 65.0 -
10 1 62.5 4
01— T T T T T T T T 60.0 T : T T T T T
0 50 100 150 200 250 300 350 400 200 225 250 275 300 325 350 375 400
Epochs Epochs
Test lost Test lost zoomed
Accuracy vs. Epochs for Different Activation Functions 0,030 Accuracy vs. Epochs for Different Activation Functions
—— RelU_seedl = RelU_seedl
44 RelLU_seed2 0.025 RelU_seed?2
——— RelU_seed3 —— RelU_seed3
0.020 4
3 -
0.015
w wi
8, 2 0010
0.005 -
] 0.000 | . - == !
—0.005 1
04
0 50 100 150 200 250 300 350 400 0‘010350 360 370 380 390 400
Epochs Epochs

Bilag 9: Leaky-ReLU forskellige seeds. Bade train og test

Train acc zoomed

Train acc
Accuracy vs. Epochs for Different Activation Functions
100
80 1
- 60
9
c
=1
%
40 1
201
= Leaky-ReLU seedl
Leaky-ReLU seed2
0 —— Leaky-RelU seed3
T T T T T T T T T
(1] 50 100 150 200 250 300 350 400
Epochs

Accuracy vs. Epochs for Different Activation Functions

100.10
—— Leaky-ReLU_seedl
100.05 4 Leaky-RelLU_seed?2
—— Leaky-RelLU_seed3
100.00
~
99.95 : 6 : w : :
>
o
®
5 99.90 4
o
2
99.85
99.80
99.75
99.70 T T T T
350 360 370 380 390 400

Epochs

Train lost

Train lost zoomed




Forskerspirer 2023

Accuracy vs. Epochs for Different Activation Functions
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Bilag 10: Sigmoid, ReLU og Leaky-RelLU
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Webside 1:

Brownlee, J. (12. september 2020). machinelearningmastery. Hentet fra machine learning mastery:
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-
learning-neural-networks/

£ Machine Learning Mastery

Making Developers Awesome at Machine Learning

MACHINE
LEARNING
MASTERY

Click to Take the FREE Deep Learning Performance Crash-Course

Search...

Understand the Impact of Learning Rate on Neural
Network Performance

by Jason Brownlee on September 12, 2020 in Deep Learning Performance ¢ 64

Deep learning neural networks are trained using the stochastic gradient descent optimization algorithm.

The learning rate is a hyperparameter that controls how much to change the model in response to the
estimated error each time the model weights are updated. Choosing the learning rate is challenging as a
value too small may result in a long training process that could get stuck, whereas a value too large may
result in learning a sub-optimal set of weights too fast or an unstable training process.

The learning rate may be the most important hy perparameter when configuring your neural network.
Therefore it is vital to know how to investigate the effects of the learning rate on model performance and to
build an intuition about the dynamics of the learning rate on model behavior.

In this tutorial, you will discover the effects of the learning rate, learning rate schedules, and adaptive
learning rates on model performance.

After completing this tutorial, you will know:

e How large learning rates result in unstable training and tiny rates result in a failure to train.

e Momentum can accelerate training and learning rate schedules can help to converge the optimization
process.

» Adaptive learning rates can accelerate training and alleviate some of the pressure of choosing a
learning rate and learning rate schedule.

Kick-start your project with my new book Better Deep Learning, including step-by-step tutorials and the
Python source code files for all examples.

Let’s get started.

e Updated Feb/2019: Fixed issue where callbacks were mistakenly defined on compile() instead of fit()
functions.
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Learning Rate and Gradient Descent

Deep learning neural networks are trained using the stochastic gradient descent algorithm.

Stochastic gradient descent is an optimization algorithm that estimates the error gradient for the current
state of the model using examples from the training dataset, then updates the weights of the model using
the back-propagation of errors algorithm, referred to as simply backpropagation.

The amount that the weights are updated during training is referred to as the step size or the “learning rate.”

Specifically, the learning rate is a configurable hyperparameter used in the training of neural networks that
has a small positive value, often in the range between 0.0 and 1.0.

The learning rate controls how quickly the model is adapted to the problem. Smaller learning rates require
more training epochs given the smaller changes made to the weights each update, whereas larger learning
rates result in rapid changes and require fewer training epochs.

A learning rate that is too large can cause the model to converge too quickly to a suboptimal solution,
whereas a learning rate that is too small can cause the process to get stuck.

The challenge of training deep learning neural networks involves carefully selecting the learning rate. It may
be the most important hyperparameter for the model.

The learning rate is perhaps the most important hyperparameter. If you have time to tune only
one hyperparameter, tune the learning rate.

— Page 429, Deep Learning, 2016.

Now that we are familiar with what the leaming rate is, let's look at how we can configure the learning rate
for neural networks.

For more on what the leaming rate is and how it works, see the post:

* How to Configure the Learning Rate Hyperparameter When Training Deep Leamning Neural Networks
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Webside 2:
Duarte, F. (13. july 2023). explodingtopics. Hentet fra https://explodingtopics.com/blog/chatgpt-
users

According to the latest available data, ChatGPT currently has over 100 million users.
And the website generated 1.6 billion visits in June 2023.

." ChatGPT has over 100
'.‘ million users

This user and traffic growth was achieved in a record-breaking three-month period
(from April 2023 to June 2023).

Sources: The Guardian, Similarweb

ChatGPT User Growth

According to OpenAl, ChatGPT acquired 1 million users just 5 days after launching in
November 2022.

By comparison, it took Instagram approximately 2.5 months to reach 1 million
downloads. Whereas Netflix had to wait around 3.5 years to reach 1 million users.

Time taken to reach 1 million users

Threads
CnatGPTl
Insu:gram l

°

5 oo
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Here's a breakdown of the approximate time taken to reach 1 million users for various

online services:

Gidine Sadvica Launch Time Taken to Reach 1 Million
Year Users
Threads 2023 Thour
ChatGPT 2022 5days
Instagram*** 2010 2.5months
Spotify 2008 5 months
Dropbox 2008 7 months
Facebook 2004 10 months
Foursquare*** 2009 13 months
Twitter 2006 2years
Airbnb** 2008 2.5years
Kickstarter* 2009 2.5years
Netflix 1999 3.5years
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* 1 million backers ** 1 million nights booked *** 1 million downloads
Incredibly, it's estimated that ChatGPT hit 100 million monthly active users in January
2023. This made it the fastest-growing application in history until Threads took that

crown in July 2023.

To put that into perspective, TikTok took 9 months to reach 100 million users. And
Instagram took 2.5 years.

Approximately 13 million unique visitors used ChatGPT each day in January - over 2x
more than in December.

Here's how ChatGPT monthly visits progressed over its first six months:

Change Over
Change Over
Month Number of Visits Previous Month
Previous Month
(%)
November 2022 152.7 million - -
December 2022 266 million T 113.3 million T 74.2%
January 2023 616 million T 350 million 1 131.58%
February 2023 1billion T 384 million T 62.34%
March 2023 1.6 billion T 600 million T 60%
April 2023 1.8 billion T 200 million 1125%
May 2023 1.8 billion - -
June 2023 1.6 billion 4 200 million 112.5%

Source: Statista, Reuters

ChatGPT User Stats

According to Similarweb, chat.openai.com has been visited approximately 1.6 billion
times over the last 30 days. That's an increase of 160% from February 2023's 1 billion.

And around 7x more than December 2022's 266 million visits.
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ChatGFT has a bounce rate of 38.67%.

Each ChatGPT visitor views an average of 4.26 pages per visit. And each user spends an

average of 7 minutes and 27 seconds on the website.

Here's how ChatGPT compares to other popular websites in terms of monthly visitors:

Website | Total Visits ::::“E :::5 i ::‘::?:nws“
ChatGPT 1.6 billion 38.67% 4.26 Jmins 27 secs
Google 84.6 billion 2B.46% 8.66 10 mins 38 secs
YouTube 327 billion 21.31% 11.56 20mins 25 secs
Facebook |16.8 billion 30.83% B.68 10 mins 43 secs
Twitter 6.5 billion 32.46% 1019 10 mins 47 secs
Instagram | 6.5 billion 34.61% 10.81 8 mins 22 secs
Baidu 51 billion 21.54% B2 5mins 06 secs
Wikipedia |4.4 billion 59.61% 3.09 3Imins 53 secs
Yandex 3.3 billion 24 06% 9.3 9mins 12 secs
Yahoo 3.3 billion 33.33% 5.51 Bmins 35 secs
WhatsApp | 2.9billion 42.93% 1.72 18 mins 38 secs
Amazon 2.3 billion 34.47% 928 7mins 13 secs

Source: Similarweb, Wikipedia
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Webside 3:
IBM. (u.d.). IBM. Hentet fra https://www.ibm.com/topics/supervised-learning

How supervised
earning works

Supervised learning uses a training set to teach models to yield the desired output. This
training dataset includes inputs and correct outputs, which allow the model to learn over
time. The algorithm measures its accuracy through the loss function, adjusting until the
error has been sufficiently minimized.

Supervised learning can be separated into two types of problems when data mining—
classification and regression:

— Classification uses an algorithm to accurately assign test data into specific categories.
It recognizes specific entities within the dataset and attempts to draw some
conclusions on how those entities should be labeled or defined. Common
classification algorithms are linear classifiers, support vector machines (SVM),
decision trees, k-nearest neighbor, and random forest, which are described in more
detail below.

— Regression is used to understand the relationship between dependent and
independent variables. It is commonly used to make projections, such as for sales
revenue for a given business. Linear regression, logistical regression, and polynomial
regression are popular regression algorithms.
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Supervised learning
algorithms

Various algorithms and computations technigues are used in supervised machine
learning processes. Below are brief explanations of some of the most commanly used
learning methods, typically calculated through use of programs like B or Python:

- Neural networks: Primarily leveraged for deep learning algorithms, neural
netwaorks process training data by mimicking the interconnectivity of the human brain
through layers of nodes. Each node is made up of inputs, weights, a bias (or
thrashald), and an output. If that output value exceeds a given threshold, it "fires” or
activates the node, passing data to the next layer in the network. Meural networks
learn this mapping function through supervised learning, adjusting based on the loss
function through the process of gradient descent. When the cost function is at or near
2ero, we can be confident in the model’s accuracy to yield the correct answer.

- Nalve bayes: Maive Bayes is classification approach that adopts the principle of class
conditional independence from the Bayes Theoram. This means that the presencea of
one feature does not impact the presence of ancther in the probability of a given
outcome, and each predictor has an equal effect on that result. Thera are three types
of Naive Bayes classifiers: Multinomial Maive Bayes, Bernoulli Maive Bayes, and
Gaussian Maive Bayes. This technigue is primarily used in text classification, spam
identification, and recommendation systems.

— Linear regresslon: Linear regression is used to identify the relationship between a
dependent variable and one or more indepandeant variables and is typically leveraged
to make predictions about future cutcomes. When there is anly one independent
variable and one dependent variable, it is known as simple linear regression. As the
number of indepandant variables increases, it is referred to as multiple linear
regression, For each type of linear regression, it seeks to plot a line of best fit, which is
calculated through the methed of least squares. However, unlike other regression
medels, this line is straight when plotted on a graph.

- Logistic regression: While linear regressicn is leveraged when dependent variablas
are continuous, logistic regraseion ie selected when the dependent variable is
categorical, meaning they have binary cutputs, such as "true” and "false” or "yes® and
"na" While both regression models seek to understand relationships between data
inputs, logistic regression is mainly used to solve binary classification problems, such
as spam identification.

= Support vector machines (SYM): & support vector machineg is a popular supervised
learning model developed by Viadimir Vapnik, used for both data classification and
regression. That said, it is typically leveraged for classification problams, constructing
a hyperplane where the distance between two classes of data points is at its
maximum. This hyperplane is known as the decision boundary, separating the classes
of data points (e.g., oranges ve. apples) on either side of the plane.

- K-nearest neighbor: K-nearest neighbor, also known as the KMM algorithm, is a non-
parametric algerthm that classifies data points based on their proximity and
association to other available data. This algorithm assumes that similar data points
can be found near each other. As a result, it seeks to calculate the distance between
data points, usually through Euclidean distance, and then it assigns a category based
an the most frequent category or average. I1s ease of use and low calculation time
make it a preferred algorithm by data scientists, but as the test dataset grows, the
processing time lengthens, making it less appealing for classification tasks. KNN is
typically used for recommendation engines and image recognition.

- Random forest: Random forest is another flexible supervised machine learning
algorithm used for both classification and regression purposas. The “forest”
references a collection of uncorrelated decision trees, which are then merged
together to reduce variance and create more accurate data predictions.,
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Unsupervised vs.
supervised vs. semi-
supervised learning

Unsupervised machine learning and supervisad machine learning are frequently
discussed together. Unlike supervised learning, unsupervised learning uses unlabeled
data. From that data, it discovers patterns that help solve for elustering or association
problems. This is particularly useful when subject matter experts are unsure of commen
properties within a data set. Common clustering algorithms are hierarchical, k-means,
and Gaussian mixture models.

Semi-supervised learning occurs when only part of the given input data has been labaled.
Unsupervised and semi-supervised learning can be more appealing alternatives as it can
be time-consuming and costly to rely on domain expertise to label data appropriately for
supervised learning.

For a deep dive into the differences batween these approaches, check out "Supervised
ve. Unsupervised Learning: What's the Difference?
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Supervised learning
examples

Supervised learning models can be used to build and advance a number of business
applications, including the following:

= Image- and object-recognition: Supervised learning algorithms can be used to locate,
isolate, and categorize objects out of videos or images, making them useful whan
applied to various computer vision technigues and imagery analysis,

= Predictive analytics: & widespread use case for supervised learning modals is in
creating predictive analytics systems to provide deep insights into various business
data peints. This allows enterprises to anticipate certain results based on a given
output variable, helping business leaders justify decisions or pivot for the benefit of
the crganization.

= Customer sentimant analysis: Using supervised machine learning algorithms,
organizations can extract and classify important pieces of information from large
volumes of data—including context, emotion, and intent—with very little human
intervention. This can be incredibly useful when gaining a better understanding of
customer interactions and can be used te improave brand engagement efforts,

- Spam detection: Spam detectien is anather example of a supervised learning model.
Using supervised classification algorithms, organizations can train databases to
recognize patterns or anomalies in new data to organize spam and non-spam-related
correspondences effactivaly.
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Webside 4:
Izmailov, P., Garipoy, T., & Wilson, A. G. (2018). Visualizing Mode Connectivity. Hentet fra
izmailovpavel.github: https://izmailovpavel.github.io/curves blogpost/

Visualizing Mode Connectivily

Blogpost by Pavel [zmatlov, Timur Garipov and Andrew Gordon Wilson;
visualizations in collaboration Javier Ideami.

[Code, Paper]

Figure 1: visualization of mode connectivity for ResNet-20 with no skip

connections on CIFAR-10 dataset. The visualization is created in
collaboration with Javier Ideami (https://losslandscape.com/).

Understanding generalization in deep neural networks is a great open
question. Neural networks are trained by minimizing loss surfaces that
are highly multimodal, with many settings of parameters that achieve no
training loss but poor generalization. By understanding the geometric
properties of these loss surfaces we can begin to resolve these
questions and build more effective training procedures. Indeed, the
local smoothness and convexity of loss surfaces is used for analyzing
convergence of SGD and other optimizers [e. g. 12]. Recently, stochastic
weight averaging [5] was proposed to find flatter regions of the loss,
leading to better generalization.

The shape of the surface also has great implications for Bayesian
approaches in deep learning. With a Bayesian approach, we not only
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want to find a single point that optimizes a risk, but rather to integrate
over a loss surface to form a Bayesian model average. The geometric
properties of the loss surface, rather than the specific locations of
optima, therefore greatly influences the predictive distribution in a
Bayesian procedure. Accordingly, recent approaches have exploited the
geometry of the SGD trajectory for scalable and high performing
Bayesian inference procedures [6, 7].

We still know very little about the properties of these loss surfaces. New
discoveries are being made, showing topological behaviour that is
highly distinct to neural networks. In this blogpost we describe mode
connectivity, a surprising property of modern neural net loss landscapes
presented in our NeurlPS 2018 paper. Our exposition in this post
focuses on obtaining intuition through visualization.

Typically, the local optima of deep neural networks are imagined as
isolated basins, as in the left panel of Figure 2. In this figure, we visualize
the high dimensional loss surface in the plane formed from all affine
combinations of three independently trained networks. In the next
section we describe the details of the visualization procedure. This
intuition comes from the following experiment: if we train two networks
of the same architecture, we get two different local optima in the
parameter space; the loss along the line segment connecting the two
solutions blows up between the optima, reaching values attained by
completely untrained networks at initialization. Surprisingly, the optima
are actually not isolated. We can find a curved path between them, such
that the loss is effectively constant along the path. We refer to this
phenomenon as mode connectivity. These curved paths can be very
simple, such as those shown in the middle and right panels of Figure 2.
These paths are also easy to find, as we explain below.

Figure 2: Loss surface of ResNet-164 on CIFAR-100. Left: three optima
for independently trained networks; Middle and Right: A quadratic
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Bezier curve, and a polygonal chain with one bend, connecting the
lower two optima on the left panel along a path of near-constant loss.

Mode connectivity has been shown to hold very generally. In [1, 2]
mode connectivity is demonstrated for multiple state-of-the-art image
classification architectures and some recurrent architectures on text
data. In [3] the authors show that it is possible to connect optima
trained with different optimizers and hyper-parameters, such as batch
sizes, weight decay, learning rate schedule and data augmentation
strategy. In [4] the authors that mode connectivity holds for policy
optimization algorithms in deep reinforcement learning.

How to Visualize Loss Surfaces?

Visualization helps us analyze and build intuition about complex
objects. Visualizations based on dimensionality reduction can reveal
interpretable structure, leading to new scientific insights; for example, in
[11] t-SNE visualizations were used to discover new sub-types of retinal
cells. Here, we study the properties of loss functions of deep neural
networks, which depend on millions (or sometimes even billions!) of
parameters. We cannot directly visualize a million-dimensional surface.
However, we can look at a 2D slice of the loss function, and if this slice
is chosen carefully, it can provide insights about the structure of the
landscape.
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Figure 3: lllustration of the loss surface visualization procedure. We pick
a 2D plane in the parameter space of a neural network, construct a
coordinate system in the plane and define a grid in this coordinate
system. Then, we evaluate loss for each point in the grid and visualize
the result.

Three points in the parameter space always define a unique 2D plane
that passes through these points. Suppose we have three points

w1, w2, ws in the weight space. These can, for example, be the vectors
of parameters (all weights and biases concatenated into a single vector)
of three independently trained networks, as in the left panel of Figure 2.
We can construct a 2-dimensional plane passing through w1, w2, w3 as
follows. We define a basis for the plane to be

u = (w2 — w1),v= (w3 — wi) and the shift vector to be w1 . We can
orthogonalize the basis by switching to v = v — cos(u, v)u, where
cos(u,v) is the cosine of the angle between vectors u and v. We can
then define a Cartesian coordinate system in the plane and map (z,y)
coordinates to the points in the original parameter space using the
formula w(z,y) = w1 + u - + v - y. Now we can construct a grid in
the coordinate system and evaluate the loss function for the network
corresponding to each of the points in the grid, and visualize the results.
Figure 3 illustrates the visualization process.

Finding Paths between Modes

The method for finding a path of low loss between a pair of optima is
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intuitively very simple: we parameterize the path and minimize the
average loss along the path with respect to its parameters. Formally,
suppose we have two optima w1 and ws of the loss function. We then
define a path connecting them as ¢(t), a mapping from the segment
0, 1] to the parameter space, such that ¢(0) = w1, ¢(1) = wo. For
example, we can use a quadratic Bezier curve:

B(t) = (1 — t)?wr + 2t(1 — t)8 + t>w2, shown with a black line in
the middle panel of Figure 2. Here is the parameter of the curve, which
has the same dimensionality and structure as the weight vectors w; and
w2. We train to minimize the average loss over the curve. Specifically,
we minimize

1
L(#) = A. Loss(¢(t))dt = Eyp,1 Loss((t)).

with respect to 6, where Loss() is the standard loss function used for
training the networks w1, we, such as cross-entropy loss for
classification.

We can compute stochastic gradients of L(8) with respect to 6
efficiently. To do so, we sample a point ¢ uniformly on [0, 1], and then
compute the gradient of Loss(¢(t)) with respect to € using the chain
rule:

OLoss((¢(t)) _ OLoss(¢(t)) 9¢(t)
06 o 0¢(t) 00 -

Using this stochastic gradient estimate, we minimize L(6) with standard
SGD.

For the quadratic Bezier curve, the whole path ¢(t) lies in a 2-
dimensional subspace of the parameter space. We can visualize the loss
function in this plane throughout training, using the visualization
procedure described in the previous section.

High-Resolution Visualizations of
Mode Connectivity
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In collaboration with Javier Ideami we have recently produced high-
resolution visualizations of the loss surfaces in the planes containing
mode connectivity. We created a video showing the training process of
a quadratic Bezier curve connecting a pair of local optima for ResNet-20
with no skip connections on CIFAR-10:

wn

@ ICARUS - Visualizing Mode Connectivity | A.l De...

S
N

In the video, the optima go from being isolated and disconnected for
the randomly initialized curve to being connected by a tunnel of low
loss, as in Figure 1.

We have also created static visualizations of ResNet-20 on the FastAl
Imagenette dataset at an even higher resolution of 1000x1000. We
show these visualizations in Figures 4, 5, 6.
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Webside 5:
Jaadi, Z. (29. marts 2023). builtin. Hentet fra https://builtin.com/data-science/step-step-
explanation-principal-component-analysis

DATA SCIENCE EXPERT CONTRIBUTORS

A Step-by-Step Explanation of
Principal Component Analysis
(PCA)

Learn how to use a PCA when working with large data sets.

Written by Zakaria Jaadi
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UPDATED BY REVIEWED BY
Brennan Whitfield | Mar 29, 2022 Sadrach Pierre

T he purpose of this post is to provide a complete and simplified explanation of principal

component analysis (PCA). We'll cover how it works step by step, so everyone can

understand it and make use of it, even those without a strong mathematical
background.

PCA is a widely covered machine learning method on the web, and there are some great

articles about it, but many spend too much time in the weeds on the topic, when most of us

just want to know how it works in a simplified way.

Principal component analysis can be broken down into five steps. I'll go through each step,
providing logical explanations of what PCA is doing and simplifying mathematical concepts

such as standardization, covariance, eigenvectors and eigenvalues without focusing on how to

compute them.

HOW DO YOU DO A PRINCIPAL COMPOMEMNT AMALYSIST

1. Standardize the range of continuous initial variables
2, Compute the covariance matrix to identify correlations

3. Compute the eigenvectors and eigenvalues of the covariance matrix to

identify the principal components
4. Create a feature vector to decide which principal components to keep

5. Recast the data along the principal components axes

First, some basic (and brief) background is necessary for context.
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What Is Principal Component Analysis?

Principal component analysis, or PCA, is a dimensionality reduction method that is often used
to reduce the dimensionality of large data sets, by transforming a large set of variables into a

smaller one that still contains most of the information in the large set.

Reducing the number of variables of a data set naturally comes at the expense of accuracy, but
the trick in dimensionality reduction is to trade a little accuracy for simplicity. Because smaller
data sets are easier to explore and visualize and make analyzing data points much easier and

faster for machine learning algorithms without extraneous variables to process.

So, to sum up, the idea of PCA is simple — reduce the number of variables of a data set,

while preserving as much information as possible.

Step-by-Step Explanation of PCA

STEP 1: STANDARDIZATION

The aim of this step is to standardize the range of the continuous initial variables so that each

one of them contributes equally to the analysis.

Muore specifically, the reason why it is critical to perform standardization prior to PCA, is that
the latter is quite sensitive regarding the variances of the initial variables. That is, if there are
large differences between the ranges of initial variables, those variables with larger ranges will
dominate over those with small ranges (for example, a variable that ranges between 0 and 100
will dominate over a variable that ranges between 0 and 1), which will lead to biased results.

So, transforming the data to comparable scales can prevent this problem.

Mathematically, this can be done by subtracting the mean and dividing by the standard

deviation for each value of each variable.

value — e

o —

standard deviation

Once the standardization is done, all the variables will be transformed to the same scale.
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STEP 2: COVARIANCE MATRIX COMPUTATION

The aim of this step is to understand how the variables of the input data set are varving from
the mean with respect to each other, or in other words, to see if there is any relationship
between them. Because sometimes, variables are highly correlated in such a way that they
contain redundant information. So, in order to identify these correlations, we compute the

covariance matrix.

The covariance matrix is a p x p symmetric matrix (where p is the number of dimensions) that
has as entries the covariances associated with all possible pairs of the initial variables. For
example, for a 3-dimensional data set with 3 variables x, y, and z, the covariance matrix is a

=3 data matrix of this from:

Cov(r,z) Covizr,y) Couvlz, z
Cov(y,x) Cou(y,y) Covly,z
Cov(z,xz) Cov(z,y) Cov(z,z

)
)
)

Since the covariance of a variable with itself is its variance (Cov{a,a)=Var(a)), in the main
diagonal (Top left to bottom right) we actually have the variances of each initial variable. And
since the covariance is commutative (Cowv(a,b)=Cov(b.a)), the entries of the covariance matrix
are symmetric with respect to the main diagonal, which means that the upper and the lower

triangular portions are equal.

What do the covariances that we have as entries of the matrix tell us about the

correlations between the variables?

It's actually the sign of the covariance that matters:

« If positive then: the two variables increase or decrease together (correlated)

« If negative then: one increases when the other decreases (Inversely
correlated)

Mow that we know that the covariance matrix is not more than a table that summarizes the

correlations between all the possible pairs of variables, let's move to the next step.
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STEP 3: COMPUTE THE EIGENVECTORS AND EIGENVALUES
OF THE COVARIANCE MATRIX TO IDENTIFY THE PRINCIPAL
COMPONENTS

Eigenvectors and eigenvalues are the linear algebra concepts that we need to compute from the
covarianee matrix in order to determine the principal components of the data. Before
getting to the explanation of these concepts, let’s first understand what do we mean by

principal components.

Principal components are new variables that are constructed as linear combinations or
mixtures of the initial variables. These combinations are done in such a way that the new
variables (i.e., principal components) are uncorrelated and most of the information within the
initial variables is squeezed or compressed into the first components. So, the idea is 10-
dimensional data gives you 10 principal components, but PCA tries to put maximum possible
information in the first component, then maximum remaining information in the second and

s0 on, until having something like shown in the seree plot below.

Percentage of explained variances

4 5 & 7 8 8 10
Principal Components

"
1 2 3

Organizing information in principal components this way, will allow vou to reduce
dimensionality without losing much information, and this by discarding the components with

low information and considering the remaining components as your new variables.

An important thing to realize here is that the principal components are less interpretable and
don’t have any real meaning since they are constructed as linear combinations of the initial

variables.

Geometrically speaking, principal components represent the directions of the data that explain
a maximal amount of variance, that is to say, the lines that capture most information of
the data. The relationship between variance and information here, is that, the larger the
variance carried by a line, the larger the dispersion of the data points along it, and the larger
the dispersion along a line, the more information it has. To put all this simply, just think of
principal components as new axes that provide the best angle to see and evaluate the data, so

that the differences between the ohservations are better visible.

HIRIMC ROV

View All Remote Data Science Jobs
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How PCA Constructs the Principal Components

As there are as many principal components as there are variables in the data, principal
components are constructed in such a manner that the first principal component accounts for
the largest possible variance in the data set. For example, let's assume that the scatter plot
of our data set is as shown below, can we guess the first principal component ? Yes, it's
approximately the line that matches the purple marks because it goes through the origin and
it's the line in which the projection of the points (red dots) is the most spread out. Or
mathematically speaking, it's the line that maximizes the variance (the average of the squared

distances from the projected points (red dots) to the origin).

The second principal component is caleulated in the same way, with the condition that it is
uncorrelated with (i.e., perpendicular to) the first prineipal component and that it accounts for

the next highest variance.

This continues until a total of p principal components have been caleulated, equal to the

original number of variables.

Now that we understand what we mean by principal components, let’s go back to eigenvectors
and eigenvalues. What vou first need to know about them is that they always come in pairs, so
that every eigenvector has an eigenvalue. And their number is equal to the number of
dimensions of the data. For example, for a 3-dimensional data set, there are 3 variables,

therefore there are 3§ eigenvectors with 3 corresponding eigenvalues.
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Without further ado, it is eigenvectors and eigenvalues who are behind all the magic explained
above, because the eigenvectors of the Covariance matrix are actually the directions of the aves
where there is the most variance (most information) and that we call Principal Components.
And eigenvalues are simply the coefficients attached to eigenvectors, which give the amount of

variance carried in each Principal Component.

By ranking your eigenvectors in order of their eigenvalues, highest to lowest, you get the

principal components in order of significance.
Principal Component Analysis Example:

Let's suppose that our data set is 2-dimensional with 2 variables 2,y and that the eigenvectors

and eigenvalues of the covariance matrix are as follows:

0.6778736
pl = Ay = 1.284028
vl { 0.7351785 J LT

b2 — | ~U-T351785 g = 0.04008323
0.67787306

If we rank the eigenvalues in descending order, we get Ai=A2, which means that the

eigenvector that corresponds to the first principal component (PC1) is v1 and the one that

corresponds to the second principal component (PCz2) isv2,

After having the principal components, to compute the percentage of variance (information)
accounted for by each component, we divide the eigenvalue of each component by the sum of
eigenvalues. If we apply this on the example above, we find that PC1 and PC2 carry respectively
46 percent and 4 percent of the variance of the data.
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STEP 4: FEATURE VECTOR

As we saw in the previous step, computing the eigenvectors and ordering them by their
eigenvalues in descending order, allow us to find the principal components in order of
significance. In this step, what we do is, to choose whether to keep all these components or
discard those of lesser significance (of low eigenvalues), and form with the remaining ones a

matrix of vectors that we call Feature vector.

So, the feature vector is simply a matrix that has as columns the eigenvectors of the
components that we decide to keep. This makes it the first step towards dimensionality
reduction, because if we choose to keep only p eigenvectors (components) out of i, the final

data set will have only p dimensions.
Principal Component Analysis Example:

Continuing with the example from the previous step, we can either form a feature vector with

both of the eigenvectors v1 and va:

0.6GTTRTI6 0.7351785
0.7351785  0LGTTRTI6

Or discard the eigenvector v2, which is the one of lesser significance, and form a feature vector

with v1 only:

(L.GTTRTAL
(1.73517TRG

Discarding the eigenvector 12 will reduce dimensionality by 1, and will consequently cause a

loss of information in the final data set. But given that v2 was carryving only 4 percent of the

information, the loss will be therefore not important and we will still have 96 percent of the

information that is carried by v1.

5o, as we saw in the example, it's up to you to choose whether to keep all the components or
discard the ones of lesser significance, depending on what you are looking for. Because if you
just want to desecribe vour data in terms of new variables (principal components) that are
uncorrelated without seeking to reduce dimensionality, leaving out lesser significant

components is not needed.
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STEP 5: RECAST THE DATA ALONG THE PRINCIPAL
COMPONENTS AXES

In the previous steps, apart from standardization, vou do not make any changes on the data,
vou just select the principal components and form the feature vector, but the input data set

remains always in terms of the original axes (i.e, in terms of the initial variables).

In this step, which is the last one, the aim is to use the feature vector formed using the
eigenvectors of the covariance matrix, to reorient the data from the original axes to the ones
represented by the principal components (hence the name Principal Components Analysis).

This can be done by multiplying the transpose of the original data set by the transpose of the
feature vector.

Final DataSet = FeatureVector! = StandardizedOviginal DataSet?
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Webside 6:
Nielsen, M. (December 2019). neuralnetworksanddeeplearning. Hentet fra
http://neuralnetworksanddeeplearning.com/chapl.html

Perceptrons

What is a neural network? To get started, I'll explain a type of
artificial neuron called a perceptron. Perceptrons were developed in
the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by
earlier work by Warren McCulloch and Walter Pitts. Today, it's
more common to use other models of artificial neurons - in this
book, and in much modern work on neural networks, the main
neuron model used is one called the sigmoid neuron. We'll get to
sigmoid neurons shortly. But to understand why sigmoid neurons
are defined the way they are, it's worth taking the time to first

understand perceptrons.

So how do perceptrons work? A perceptron takes several binary

inputs, x;,Xs, ..., and produces a single binary output:
£
&a output

Xy

In the example shown the perceptron has three inputs, x;, %, x3. In
general it could have more or fewer inputs. Rosenblatt proposed a
simple rule to compute the output. He introduced weights,

Wi, W2, ..., real numbers expressing the importance of the respective
inputs to the output. The neuron's output, 0 or 1, is determined by
whether the weighted sum ¥ ; w;x; is less than or greater than some
threshold value. Just like the weights, the threshold is a real
number which is a parameter of the neuron. To put it in more

precise algebraic terms:

0 if ¥;wjx < threshold
output = (1)

1 if ¥ i Wixj > threshold

That's all there is to how a perceptron works!


http://neuralnetworksanddeeplearning.com/chap1.html
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That's the basic mathematical model. A way you can think about the
perceptron is that it's a device that makes decisions by weighing up
evidence. Let me give an example. It's not a very realistic example,
but it's easy to understand, and we'll soon get to more realistic
examples. Suppose the weekend is coming up, and you've heard
that there's going to be a cheese festival in your city. You like
cheese, and are trying to decide whether or not to go to the festival.

You might make your decision by weighing up three factors:

1. Is the weather good?
2. Does your boyfriend or girlfriend want to accompany you?

3. Is the festival near public transit? (You don't own a car).

We can represent these three factors by corresponding binary
variables x;, x2, and x;. For instance, we'd have x; = 1 if the weather
is good, and x; = 0 if the weather is bad. Similarly, x; = 1 if your
boyfriend or girlfriend wants to go, and x, = 0 if not. And similarly

again for x; and public transit.

Now, suppose you absolutely adore cheese, so much so that you're
happy to go to the festival even if your boyfriend or girlfriend is
uninterested and the festival is hard to get to. But perhaps you
really loathe bad weather, and there's no way you'd go to the festival
if the weather is bad. You can use perceptrons to model this kind of
decision-making. One way to do this is to choose a weight w; = 6 for
the weather, and w, = 2 and w; = 2 for the other conditions. The
larger value of w; indicates that the weather matters a lot to you,
much more than whether your boyfriend or girlfriend joins you, or
the nearness of public transit. Finally, suppose you choose a
threshold of 5 for the perceptron. With these choices, the
perceptron implements the desired decision-making model,
outputting 1 whenever the weather is good, and 0 whenever the
weather is bad. It makes no difference to the output whether your
boyfriend or girlfriend wants to go, or whether public transit is

nearby.
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By varying the weights and the threshold, we can get different
models of decision-making. For example, suppose we instead chose
a threshold of 3. Then the perceptron would decide that you should
go to the festival whenever the weather was good or when both the
festival was near public transit and your boyfriend or girlfriend was
willing to join you. In other words, it'd be a different model of
decision-making. Dropping the threshold means you're more

willing to go to the festival.

Obviously, the perceptron isn't a complete model of human
decision-making! But what the example illustrates is how a
perceptron can weigh up different kinds of evidence in order to
make decisions. And it should seem plausible that a complex

network of perceptrons could make quite subtle decisions:

®
w’@\
e O\

In this network, the first column of perceptrons - what we'll call the

mputs output

first layer of perceptrons - is making three very simple decisions, by
weighing the input evidence. What about the perceptrons in the
second layer? Each of those perceptrons is making a decision by
weighing up the results from the first layer of decision-making. In
this way a perceptron in the second layer can make a decision at a
more complex and more abstract level than perceptrons in the first
layer. And even more complex decisions can be made by the
perceptron in the third layer. In this way, a many-layer network of

perceptrons can engage in sophisticated decision making.
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Let's simplify the way we describe perceptrons. The condition

¥ §WiXj > threshold is cumbersome, and we can make two notational
changes to simplify it. The first change is to write ¥ j WiXj as a dot
product, w - x = ¥ i WiXj, where w and x are vectors whose
components are the weights and inputs, respectively. The second
change is to move the threshold to the other side of the inequality,
and to replace it by what's known as the perceptron's bias,

b = —threshold. Using the bias instead of the threshold, the

perceptron rule can be rewritten:

0 ifw-x+b=<0
output = _ (2)
1 ifw-x+b>0

You can think of the bias as a measure of how easy it is to get the
perceptron to output a 1. Or to put it in more biological terms, the
bias is a measure of how easy it is to get the perceptron to fire. For a
perceptron with a really big bias, it's extremely easy for the
perceptron to output a 1. But if the bias is very negative, then it's
difficult for the perceptron to output a 1. Obviously, introducing the
bias is only a small change in how we describe perceptrons, but
we'll see later that it leads to further notational simplifications.
Because of this, in the remainder of the book we won't use the

threshold, we'll always use the bias.

I've described perceptrons as a method for weighing evidence to
make decisions. Another way perceptrons can be used is to compute
the elementary logical functions we usually think of as underlying
computation, functions such as AND, OR, and NAND. For example,
suppose we have a perceptron with two inputs, each with weight -2,

and an overall bias of 3. Here's our perceptron:
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£

Then we see that input 00 produces output 1, since

(=2) # 0+ (=2) # 0 + 3 = 3 is positive. Here, I've introduced the *
symbol to make the multiplications explicit. Similar calculations
show that the inputs 01 and 10 produce output 1. But the input 11
produces output 0, since (-2) * 1 + (-2) * 1 + 3 = —1 is negative. And

so our perceptron implements a NAND gate!

The NAND example shows that we can use perceptrons to compute
simple logical functions. In fact, we can use networks of
perceptrons to compute any logical function at all. The reason is
that the NAND gate is universal for computation, that is, we can
build any computation up out of NAND gates. For example, we can
use NAND gates to build a circuit which adds two bits, x; and x,.
This requires computing the bitwise sum, x; ® x», as well as a carry
bit which is set to 1 when both x; and x; are 1, i.e., the carry bit is

just the bitwise product x; x;:

T
}. } sum: x; P o

s —17 L—D:J—
} carry bit: rix2

To get an equivalent network of perceptrons we replace all the NAND

gates by perceptrons with two inputs, each with weight -2, and an
overall bias of 3. Here's the resulting network. Note that I've moved
the perceptron corresponding to the bottom right NAND gate a little,

just to make it easier to draw the arrows on the diagram:
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One notable aspect of this network of perceptrons is that the output
from the leftmost perceptron is used twice as input to the
bottommost perceptron. When I defined the perceptron model I
didn't say whether this kind of double-output-to-the-same-place
was allowed. Actually, it doesn't much matter. If we don't want to
allow this kind of thing, then it's possible to simply merge the two
lines, into a single connection with a weight of -4 instead of two
connections with -2 weights. (If you don't find this obvious, you
should stop and prove to yourself that this is equivalent.) With that
change, the network looks as follows, with all unmarked weights
equal to -2, all biases equal to 3, and a single weight of -4, as

marked:

I

sum: Iy @ re

X2
—4

carry bit: xyaxs

Up to now I've been drawing inputs like x; and x, as variables
floating to the left of the network of perceptrons. In fact, it's
conventional to draw an extra layer of perceptrons - the input layer

- to encode the inputs:

sum: ry P xo

carry bit: xixo

This notation for input perceptrons, in which we have an output,

@*

but no inputs,
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is a shorthand. It doesn't actually mean a perceptron with no
inputs. To see this, suppose we did have a perceptron with no
inputs. Then the weighted sum 3 i WiX; would always be zero, and so
the perceptron would output 1if b > 0, and 0 if b < 0. That is, the
perceptron would simply output a fixed value, not the desired value
(x1, in the example above). It's better to think of the input
perceptrons as not really being perceptrons at all, but rather special
units which are simply defined to output the desired values,

X15X2seeen

The adder example demonstrates how a network of perceptrons can
be used to simulate a circuit containing many NAND gates. And
because NAND gates are universal for computation, it follows that

perceptrons are also universal for computation.

The computational universality of perceptrons is simultaneously
reassuring and disappointing. It's reassuring because it tells us that
networks of perceptrons can be as powerful as any other computing
device. But it's also disappointing, because it makes it seem as
though perceptrons are merely a new type of NAND gate. That's
hardly big news!

However, the situation is better than this view suggests. It turns out
that we can devise learning algorithms which can automatically
tune the weights and biases of a network of artificial neurons. This
tuning happens in response to external stimuli, without direct
intervention by a programmer. These learning algorithms enable us
to use artificial neurons in a way which is radically different to
conventional logic gates. Instead of explicitly laying out a circuit of
NAND and other gates, our neural networks can simply learn to solve
problems, sometimes problems where it would be extremely

difficult to directly design a conventional circuit.
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Webside 7:
olah, c. (31. august 2015). colah's blog . Hentet fra http://colah.github.io/posts/2015-08-Backprop/

Calculus on Computational
Graphs: Backpropagation

Posted on August 31, 2015

Introduction

Backpropagation is the key algorithm that makes training deep models computationally
tractable. For modern neural networks, it can make training with gradient descent as much as
ten million times faster, relative to a naive implementation. That’s the difference between a

model taking a week to train and taking 200,000 years.

Beyond its use in deep learning, backpropagation is a powerful computational tool in many other
areas, ranging from weather forecasting to analyzing numerical stability — it just goes by different
names. In fact, the algorithm has been reinvented at least dozens of times in different fields (see

Griewank (2010)). The general, application independent, name is “reverse-mode differentiation.”

Fundamentally, it’s a technique for calculating derivatives quickly. And it’s an essential trick to
have in your bag, not only in deep learning, but in a wide variety of numerical computing

situations.

Computational Graphs

Computational graphs are a nice way to think about mathematical expressions. For example,
consider the expression e = (a+b) * (b + 1). There are three operations: two additions and one
multiplication. To help us talk about this, let’s introduce two intermediary variables, ¢ and d so

that every function’s output has a variable. We now have:
c=a+b
d=b+1

e=cx*d


http://colah.github.io/posts/2015-08-Backprop/
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To create a computational graph, we make each of these operations, along with the input
variables, into nodes. When one node’s value is the input to another node, an arrow goes from

one to another.

These sorts of graphs come up all the time in computer science, especially in talking about
functional programs. They are very closely related to the notions of dependency graphs and call

graphs. They’re also the core abstraction behind the popular deep learning framework Theano.

We can evaluate the expression by setting the input variables to certain values and computing

nodes up through the graph. For example, let’s set a =2 and b = 1:

@

/
G
/’\ e

The expression evaluates to 6.
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Derivatives on Computational Graphs

If one wants to understand derivatives in a computational graph, the key is to understand
derivatives on the edges. If a directly affects ¢, then we want to know how it affects c. If a

changes a little bit, how does ¢ change? We call this the partial derivative of ¢ with respect to a.

To evaluate the partial derivatives in this graph, we need the sum rule and the product rule:

d da db
g(a+b)—£+g—l
iuv—uﬁ+ @—v
du  du  du

What if we want to understand how nodes that aren’t directly connected affect each other? Let’s
consider how e is affected by a. If we change a at a speed of 1, ¢ also changes at a speed of 1. In
turn, ¢ changing at a speed of 1 causes e to change at a speed of 2. So e changes at a rate of

1 * 2 with respect to a.

The general rule is to sum over all possible paths from one node to the other, multiplying the
derivatives on each edge of the path together. For example, to get the derivative of e with

respect to b we get:

%=1*2+1*3

This accounts for how b affects e through ¢ and also how it affects it through d.

This general “sum over paths” rule is just a different way of thinking about the multivariate

chain rule.
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Factoring Paths

The problem with just “summing over the paths” is that it’s very easy to get a combinatorial

explosion in the number of possible paths.

;)!O‘\‘ /60‘\
e ﬁ - 6 e
In the above diagram, there are three paths from X to Y, and a further three paths from Y to Z.
If we want to get the derivative g—i by summing over all paths, we need to sum over 3«3 =9
paths:
dZ

5{=(JLE)+(:te+c:)t‘g+[56+|3e+ﬁt+w‘3+ye+y‘g

The above only has nine paths, but it would be easy to have the number of paths to grow

exponentially as the graph becomes more complicated.

Instead of just naively summing over the paths, it would be much better to factor them:

aZ

5{=(a+ﬁ+y)(6+e+‘g)

This is where “forward-mode differentiation” and “reverse-mode differentiation” come in. They’re
algorithms for efficiently computing the sum by factoring the paths. Instead of summing over all
of the paths explicitly, they compute the same sum more efficiently by merging paths back

together at every node. In fact, both algorithms touch each edge exactly once!

Forward-mode differentiation starts at an input to the graph and moves towards the end. At
every node, it sums all the paths feeding in. Each of those paths represents one way in which the
input affects that node. By adding them up, we get the total way in which the node is affected

by the input, it’s derivative.

Forward-Mode Differentiation (:—X)
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Though you probably didn’t think of it in terms of graphs, forward-mode differentiation is very

similar to what you implicitly learned to do if you took an introduction to calculus class.

Reverse-mode differentiation, on the other hand, starts at an output of the graph and moves

towards the beginning. At each node, it merges all paths which originated at that node.

Reverse-Mode Differentiation (%Z)

X
a+ P +)d+e+C)

Forward-mode differentiation tracks how one input affects every node. Reverse-mode
differentiation tracks how every node affects one output. That is, forward-mode differentiation
applies the operator % to every node, while reverse mode differentiation applies the operator %

to every node.'

Computational Victories

At this point, you might wonder why anyone would care about reverse-mode differentiation. It

looks like a strange way of doing the same thing as the forward-mode. Is there some advantage?

Let’s consider our original example again:

P b b
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We can use forward-mode differentiation from b up. This gives us the derivative of every node

with respect to b.

da

a0

We've computed %: the derivative of our output with respect to one of our inputs.

What if we do reverse-mode differentiation from e down? This gives us the derivative of e with

respect to every node:

When I say that reverse-mode differentiation gives us the derivative of e with respect to every
node, I really do mean every node. We get both % and %, the derivatives of e with respect to
both inputs. Forward-mode differentiation gave us the derivative of our output with respect to a

single input, but reverse-mode differentiation gives us all of them.

For this graph, that’s only a factor of two speed up, but imagine a function with a million inputs
and one output. Forward-mode differentiation would require us to go through the graph a million
times to get the derivatives. Reverse-mode differentiation can get them all in one fell swoop! A

speed up of a factor of a million is pretty nice!
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For this graph, that’s only a factor of two speed up, but imagine a function with a million inputs
and one output. Forward-mode differentiation would require us to go through the graph a million
times to get the derivatives. Reverse-mode differentiation can get them all in one fell swoop! A

speed up of a factor of a million is pretty nice!

When training neural networks, we think of the cost (a value describing how bad a neural
network performs) as a function of the parameters (numbers describing how the network
behaves). We want to calculate the derivatives of the cost with respect to all the parameters, for
use in gradient descent. Now, there’s often millions, or even tens of millions of parameters in a
neural network. So, reverse-mode differentiation, called backpropagation in the context of neural

networks, gives us a massive speed up!

(Are there any cases where forward-mode differentiation makes more sense? Yes, there are!
Where the reverse-mode gives the derivatives of one output with respect to all inputs, the
forward-mode gives us the derivatives of all outputs with respect to one input. If one has a

function with lots of outputs, forward-mode differentiation can be much, much, much faster.)

Isn’t This Trivial?

When T first understood what backpropagation was, my reaction was: “Oh, that’s just the chain
rule! How did it take us so long to figure out?” I'm not the only one who’s had that reaction. It’s
true that if you ask “is there a smart way to calculate derivatives in feedforward neural

networks?” the answer isn’t that difficult.

But I think it was much more difficult than it might seem. You see, at the time backpropagation
was invented, people weren’t very focused on the feedforward neural networks that we study. It
also wasn’t obvious that derivatives were the right way to train them. Those are only obvious

once you realize you can quickly calculate derivatives. There was a circular dependency.

Worse, it would be very easy to write off any piece of the circular dependency as impossible on
casual thought. Training neural networks with derivatives? Surely you’d just get stuck in local
minima. And obviously it would be expensive to compute all those derivatives. It’s only because

we know this approach works that we don’t immediately start listing reasons it’s likely not to.

That’s the benefit of hindsight. Once you've framed the question, the hardest work is already

done.
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Conclusion

Derivatives are cheaper than you think. That’s the main lesson to take away from this post. In
fact, they’re unintuitively cheap, and us silly humans have had to repeatedly rediscover this fact.
That’s an important thing to understand in deep learning. It’s also a really useful thing to know

in other fields, and only more so if it isn’t common knowledge.
Are there other lessons? I think there are.

Backpropagation is also a useful lens for understanding how derivatives flow through a model.
This can be extremely helpful in reasoning about why some models are difficult to optimize. The

classic example of this is the problem of vanishing gradients in recurrent neural networks.

Finally, I claim there is a broad algorithmic lesson to take away from these techniques.
Backpropagation and forward-mode differentiation use a powerful pair of tricks (linearization and
dynamic programming) to compute derivatives more efficiently than one might think possible. If
you really understand these techniques, you can use them to efficiently calculate several other

interesting expressions involving derivatives. We'll explore this in a later blog post.

This post gives a very abstract treatment of backpropagation. I strongly recommend reading
Michael Nielsen’s chapter on it for an excellent discussion, more concretely focused on neural

networks.
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hvordan-bruger-du-ai-chatbotten/ ~

ChatGPT er blevet et internetfaenomen pa ingen tid. Den imponerer alle
med dens Al-genereret indhold. Det er sa hypet, at du ikke kan undga at
forholde dig til det.

Det har udviklet sig fra at vaere endnu en chatbot pa nettet til at vaere et
kaempe fremskridt i den naeste aera af innovation.

Det er dog ikke alle, der helt forstar hvad der sker, og maske sperger du
dig selv: Hvorfor alt det larm omkring ChatGPT? Er det ikke bare en
chatbot?

Laes videre og bliv klogere pa hvad ChatGPT er.

ChatGPT

A
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Hvad er ChatGPT?

ChatGPT er en “conversional Al chatbot”. Med andre ord, en chatbot som
svarer pa dine forespgrgsler, ogsa kaldet prompts, og som simulerer
menneskelig intelligens. Pa det simpleste niveau , sa betyder det, at du
kan stille et spe@rgsmal, og den vil svare dig - samtidigt med at den bliver
“klogere” over tid.

Men lad os lige blive enige om hvad jeg mener med Al her...

Al er en forkortelse for kunstig intelligens og henviser til simulering af
menneskelig intelligens i maskiner, der er programmeret til at tzenke og
laere som mennesker.

ChatGPT blev farst lanceret som en prototype for offentligheden i
november 2022 og voksede hurtigt til over 100 millioner brugere i januar
2023, hvilket g@r den til den hurtigst teknologissoftware, der nogensinde
er blevet lavet.

ChatGPT fungerer ved at bruge en form for kunstig intelligens, der kaldes
‘machine learning’. Dataen, som den bruger til at svare, stammer fra store
maengder tekst fra internettet og andre kilder, sa chatbotten kan lzere at
genkende manstre og sammenhzaenge mellem ord og satninger.

Det er dog vigtigt at pointere at den nuvaerende version af ChatGPT
(GPT-3.5) har som sadan ikke adgang til internettet, dens viden er
begraenset til begivenheder som skete far 2021.

Overvej felgende: Det tog ChatGPT 2 mdneder at nd over 100 millioner aktive
brugere.

MONTHS TAKEN TO REACH 100 MILLION USERS

41
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TARANOVICH, S. (27. april 2019). EDN. Hentet fra https://www.edn.com/how-the-sigmoid-
function-is-used-in-ai/

How the sigmoid function is used in Al

APRIL 27, 2019
BY STEVE TARANOVICH

When is the last time you used a sigmoid function?
The sigmoid logistic function was introduced in a series of three papers by Pierre Francois

Verhulst between 1838 and 1847, who devised it as a model of population growth by adjusting the
exponential growth model, under the guidance of Adolphe Quetelet (Figure1).

dsyrptote

Logaruhmguc

° o o ¢

Figure 1 Verhulst's logistic curve, contrasted with a logarithmic curve

For a 1963 example of how a sigmoid function and curve can be used, see Reference 1. An electro-
optical instrument measures the capacity of red blood cell membranes as their internal pressure
increases due to the diffusion of water into the cells via a gradual deceasing of salt concentration
of the fluid surrounding the cell. This test yields an osmotic fragility curve. A direct sigmoid curve
or a derivative curve can then be used to fit the data and then recorded.

In today’s modern world of artificial intelligence (Al), the sigmoid function is used in artificial
neural networks (Reference 6) to determine the relationships between biological and artificial

neural networks.

See how the sigmoid function can also be used in machine learning (ML) in a data center. In
Reference 7, section 2.2.2 on Forward Propagation, the activation function mimics the biological
neuron firing within a network by mapping the nodal input values to an output in the range (0,1).
It is given by the sigmoidal logistic function.

Steve Taranovich is a senior technical editor at EDN with 45 years of experience in the electronics
industry.
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The Vanishing Gradient Problem

The Problem, Its Causes, Its Significance, and Its Solutions

% Chi-Feng Wang - Follow
Published in Towards Data Science - 3minread « Jan 8 2019

The problem:

As more layers using certain activation functions are added to neural
networks, the gradients of the loss function approaches zero, making the

network hard to train.

Why:

Certain activation functions, like the sigmoid function, squishes a large input
space into a small input space between 0 and 1. Therefore, a large change in
the input of the sigmoid function will cause a small change in the output.

Hence, the derivative becomes small.
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The problem:

As more layers using certain activation functions are added to neural
networks, the gradients of the loss function approaches zero, making the
network hard to train.

Why:

Certain activation functions, like the sigmoid function, squishes a large input
space into a small input space between 0 and 1. Therefore, a large change in
the input of the sigmoid function will cause a small change in the output.
Hence, the derivative becomes small.

Image 1: The sigmoid function and its derivative f Source

As an example, Image 1 is the sigmoid function and its derivative. Note how
when the inputs of the sigmoid function becomes larger or smaller (when |x|

becomes bigger), the derivative becomes close to zero.
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Why it's significant:
For shallow network with only a few layers that use these activations, this
isn't a big problem. However, when more layers are used, it can cause the

gradient to be too small for training to work effectively.

Gradients of neural networks are found using backpropagation. Simply put,
backpropagation finds the derivatives of the network by moving layer by
layer from the final layer to the initial one. By the chain rule, the derivatives
of each layer are multiplied down the network (from the final layer to the
initial) to compute the derivatives of the initial layers.

However, when n hidden layers use an activation like the sigmoid function, n
small derivatives are multiplied together. Thus, the gradient decreases
exponentially as we propagate down to the initial layers.

A small gradient means that the weights and biases of the initial layers will
not be updated effectively with each training session. Since these initial
layers are often crucial to recognizing the core elements of the input data, it
can lead to overall inaccuracy of the whole network.

Solutions:

The simplest solution is to use other activation functions, such as RelU,
which doesn't cause a small derivative.

Residual networks are another solution, as they provide residual
connections straight to earlier layers. As seen in Image 2, the residual
connection directly adds the value at the beginning of the block, x, to the
end of the block (F{x)+x). This residual connection doesn't go through
activation functions that “squashes” the derivatives, resulting in a higher
overall derivative of the block.

T higihlighit
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F(x) Lrelu .
weight layer identity

Image 2: & residual block

Finally, batch normalization layers can also resolve the issue. As stated
before, the problem arises when a large input space is mapped to a small
one, causing the derivatives to disappear. In Image 1, this is most clearly
seen at when |x| is big. Batch normalization reduces this problem by simply
normalizing the input so |x| doesn't reach the outer edges of the sigmoid
function. As seen in Image 3, it normalizes the input so that most of it falls in

the green region, where the derivative isn't too small.

il
= = i ! Mg

Image 3: Sigmoid function with restricted inputs

Do leave a comment below if you have any questions or suggestions :)
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Shape analysis (digital geometry) %A 4 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

This article describes shape analysis to analyze and process geometric shapes.

Description [edit)

Shape analysis is the (mostly)[c/arification needed] 5 tomatic analysis of geometric shapes, for example using a computer to detect similarly shaped objects in
a database or parts that fit together. For a computer to automatically analyze and process geometric shapes, the objects have to be represented in a digital
form. Most commonly a boundary representation is used to describe the object with its boundary (usually the outer shell, see also 3D model). However,
other volume based representations (e.g. constructive solid geometry) or point based representations (point clouds) can be used to represent shape.

Once the objects are given, either by modeling (computer-aided design), by scanning (3D scanner) or by extracting shape from 2D or 3D images, they
have to be simplified before a comparison can be achieved. The simplified representation is often called a shape descriptor (or fingerprint, signature).
These simplified representations try to carry most of the important information, while being easier to handle, to store and to compare than the shapes
directly. A complete shape descriptor is a representation that can be used to completely reconstruct the original object (for example the medial axis
transform).

Application fields [edi)

Shape analysis is used in many application fields:

« archeology for example, to find similar objects or missing parts

« architecture for example, to identify objects that spatially fit into a specific space

+ medical imaging to understand shape changes related to illness or aid surgical planning

« virtual environments or on the 3D model market to identify objects for copyright purposes

= security applications such as face recognition

« entertainment industry (movies, games) to construct and process geometric models or animations

« computer-aided design and computer-aided manufacturing to process and to compare designs of mechanical parts or design objects.

Shape descriptors [edit)

Shape descriptors can be classified by their invariance with respect to the transformations allowed in the associated shape definition. Many descriptors are
invariant with respect to congruency, meaning that congruent shapes (shapes that could be translated, rotated and mirrored) will have the same descriptor
(for example moment or spherical harmonic based descriptors or Procrustes analysis operating on point clouds).

Another class of shape descriptors (called intrinsic shape descriptors) is invariant with respect to isometry. These descriptors do not change with different
isometric embeddings of the shape. Their advantage is that they can be applied nicely to deformable objects (e.g. a person in different body postures) as
these deformations do not involve much stretching but are in fact near-isometric. Such descriptors are commonly based on geodesic distances measures
along the surface of an object or on other isometry invariant characteristics such as the Laplace—Beltrami spectrum (see also spectral shape analysis).

There are other shape descriptors, such as graph-based descriptors like the medial axis or the Reeb graph that capture geometric and/or topological
information and simplify the shape representation but can not be as easily compared as descriptors that represent shape as a vector of numbers.

From this discussion it becomes clear, that different shape descriptors target different aspects of shape and can be used for a specific application.
Therefore, depending on the application, it is necessary to analyze how well a descriptor captures the features of interest.
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wikipedia . (u.d.). Hentet fra Level-set method: https://en.wikipedia.org/wiki/Level-
set_methodwikipidea . (u.d.). Hentet fra Principal component analysis:
https://en.wikipedia.org/wiki/Principal component_analysis

Principal component analysis ¥ 34 languages

Aricle Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

Principal component analysis (PCA) is a popular technigue for analyzing large datasets containing a high Part of a series on
number of dimensions/features per observation, increasing the interpretability of data while preserving the Machine learning
maximum amount of information, and enabling the visualization of multidimensional data. Formally, PCA is a and data mining
statistical technigue for reducing the dimensionality of a dataset. This is accomplished by linearly
transforming the data into a new coordinate system where (most of) the variation in the data can be
described with fewer dimensions than the initial data. Many studies use the first two principal components in
order to plot the data in two dimensions and to visually identify clusters of closely related data points.
Principal component analysis has applications in many fields such as population genetics, microbiome
studies, and atmospheric science.I"!

The principal components of a collection of points in a real coordinate space are a sequence of p unit

vectors, where the 4-th vector is the direction of a line that best fits the data while being orthogonal to the first
i — 1 vectors. Here, a best-fitting line is defined as one that minimizes the average squared perpendicular Panina [show]
distance from the points to the line. These directions constitute an orthonormal basis in which different

Problems [show]
individual dimensions of the data are linearly uncorrelated. Principal component analysis is the process of
. ‘Supervised learning [show]
computing the principal compenents and using them to perform a change of basis on the data, sometimes e )
using only the first few principal components and ignoring the rest.
g only princip: P 9 9 Clustering [show]

In data analysis, the first principal component of a set of p variables, presumed to be jointly normally
distributed, is the derived variable formed as a linear combination of the original variables that explains the

Dimensionality reduction [show]

most variance. The second principal component explains the most variance in what is left once the effect of Structu] procfetlon A=
the first component is removed, and we may proceed through p iterations until all the variance is explained. el o Fi=]
PCA is most commonly used when many of the variables are highly correlated with each other and it is Artificial neural network [show]
desirable to reduce their number to an independent set. Reinforcement learning [show]
PCA is used in exploratory data analysis and for making predictive models. It is commonly used for Learning with humans [show]
dimensionality reduction by projecting each data point onto only the first few principal components to obtain Model diagnostics [show]

lower-dimensional data while preserving as much of the data's variation as possible. The first principal Mathematical foundations [show]

component can equivalently be defined as a direction that maximizes the variance of the projected data. The

Machine-l i [show]
i-th principal component can be taken as a direction orthogonal to the first i — 1 principal components that chine-learning venues
i h
maximizes the variance of the projected data. Related articles [show]
VT E

For either objective, it can be shown that the principal components are eigenvectors of the data's covariance
matrix. Thus, the principal components are often computed by eigendecomposition of the data

covariance matrix or singular value decomposition of the data matrix. PCA is the simplest of the true
eigenvector-based multivariate analyses and is closely related to factor analysis. Factor analysis

typically incorporates more domain-specific assumptions about the underlying structure and solves !
eigenvectors of a slightly different matrix. PCA is also related to canonical correlation analysis (GCA). e
CCA defines coordinate systems that optimally describe the cross-covariance between two datasets o

while PCA defines a new orthogonal coordinate system that optimally describes variance in a single
dataset.?I*415] Robust and L1-norm-based variants of standard PGA have also been
proposed (EI716IS)

History [edi]
PCA was invented in 1909 by Karl Pearson,””! as an analogue of the principal axis theorem in
mechanics; it was later independently developed and named by Harold Hotelling in the 1930s.'%! & -6 -1 -2 0 I 4 & & 1o

Depending on the field of application, it is also named the discrete Karhunen-Loéve transform (KLT)
in signal processing, the Hotelling transform in multivariate quality control, proper orthogenal

PCA of a multivariate Gaussian distribution &
centered at (1,3) with a standard deviation of 3 in

decomposition (POD) in mechanical engineering, singular value decomposition (SVD) of X (invented roughly the (0.866, 0.5) direction and of 1 in the
in the last quarter of the 19th osntury[”])‘ eigenvalue decompaosition (EVD) of XTX in linear algebra, orthogonal direction. The vectors shown are the
factor analysis (for a discussion of the differences between PCA and factor analysis see Ch. 7 of eigenvectors of the covariance matrix scaled by the

square root of the corresponding eigenvalue, and

Jolliffe's Principal Component Analysis),"'?! Eckart-Young theorem (Harman, 1960), or empirical T i " Sy

orthogonal functions (EOF) in meteorological science (Lorenz, 1956), empirical eigenfunction
decomposition (Sirovich, 1987), quasiharmonic modes (Brooks et al., 1988), spectral decomposition
in noise and vibration, and empirical modal analysis in structural dynamics.
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Intuition [edt)

PCA can be thought of as fitting a p-dimensional ellipsoid to the data, where each axis of the ellipsoid represents a principal component. If some axis of the
ellipsoid is small, then the variance along that axis is also small.

To find the axes of the ellipsoid, we must first center the values of each variable in the dataset on 0 by subtracting the mean of the variable's observed
values from each of those values. These transformed values are used instead of the original observed values for each of the variables. Then, we compute
the covariance matrix of the data and calculate the eigenvalues and corresponding eigenvectors of this covariance matrix. Then we must normalize each of
the orthogonal eigenvectors to turm them into unit vectors. Once this is done, each of the mutually-orthogonal unit eigenvectors can be interpreted as an
axis of the ellipsoid fitted to the data. This choice of basis will transform the covariance matrix into a diagonalized form, in which the diagonal elements
represent the variance of each axis. The proportion of the variance that each eigenvector represents can be calculated by dividing the eigenvalue
corresponding to that eigenvector by the sum of all eigenvalues.

Biplots and scree plots (degree of explained variance) are used to explain findings of the PCA.

Details [edit] ) P

PCA s defined as an orthogonal linear transformation that transforms the data to a new coordinate system such o St
that the greatest variance by some scalar projection of the data comes to lie on the first coordinate (called the first fa \\ :

principal component), the second greatest variance on the second coordinate, and so on.['?] J S

Consider ann x p data matrix, X, with column-wise zero empirical mean (the sample mean of each column has | nen

been shifted to zero), where each of the n rows represents a different repetition of the experiment, and each of the The above picture is of a scree plot &
that is meant to help interpret the PCA
and decide how many components to
Mathematically, the transformation is defined by a set of size [ of p-dimensional vectors of weights or coefficients retain. The start of the bend in the line
(point of inflexion) should indicate how
many components are retained, hence
te = (t1,---, tf)(s')’ given by in this example, three factors should be

retained.

p columns gives a particular kind of feature (say, the results from a particular sensor).

Wik = (w1,...,wp)(x) that map each row vector X(; of X to a new vector of principal component scores

thp) = X() - Wik for i=1,...,n k=1,...,1

in such a way that the individual variables ¢1, . . . , ; of t considered over the data set successively inherit the
maximum possible variance from X, with each coefficient vector w constrained to be a unit vector (where [ is usually selected to be strictly less than p to
reduce dimensionality).

First component |edit]

In order to maximize variance, the first weight vector w(;, thus has to satisfy

2
W) = arg ||I£ﬁi_)(l E.[tl)?‘*) = arg lr:waﬁx_xl Z (g - w)
L3 kl

Equivalently, writing this in matrix form gives

Wiy = ar| ma.x{ Xw 2}=a:r max {w' X' Xw
() = arg ez || Xw] € fwit j

Since w(;, has been defined to be a unit vector, it equivalently also satisfies

- w X Xw

W) = argmax {W}

The quantity to be maximised can be recognised as a Rayleigh quotient. A standard result for a positive semidefinite matrix such as X'X is that the
quotient's maximum possible value is the largest eigenvalue of the matrix, which occurs when w is the corresponding eigenvector.

With w, found, the first principal component of a data vector x; can then be given as a score &, = X3 - Wy, in the transformed co-ordinates, or as the
corresponding vector in the original variables, {X; - Wy} W(y)-

Further components | edit]

The k-th component can be found by subtracting the first k - 1 principal components from X:
. k-1
X}c =X - ZXW[E]WE—S)

s=1
and then finding the weight vector which extracts the maximum variance from this new data matrix
S 2 wTjil—}igw
W) = argmax{”kah } = arg max {f
[l =1 A
It turns out that this gives the remaining eigenvectors of X"X, with the maximum values for the quantity in brackets given by their corresponding
eigenvalues. Thus the weight vectors are eigenvectors of X"X.

The k-th principal component of a data vector x; can therefore be given as a score i, = X; - W in the transformed coordinates, or as the corresponding
vector in the space of the original variables, {x, - W} W, where w is the kth eigenvector of XX,
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The full principal components decomposition of X can therefore be given as

T =XW

where W is a p-by-p matrix of weights whose columns are the eigenvectors of XTX. The transpose of W is sometimes called the whitening or sphering

transformation. Columns of W multiplied by the square root of corresponding eigenvalues, that is, eigenvectors scaled up by the variances, are called

loadings in PCA or in Factor analysis.

Covariances |edit]
X"X itself can be recognized as proportional to the empirical sample covariance matrix of the dataset XT.[12):30-31
The sample covariance Q between two of the different principal components over the dataset is given by:
Q(PCy;), PCy) o (Xwi;) T (Xwy)
= w;';) xT Xwik)
= Wi Ay Wik
= A WH W

where the eigenvalue property of w, has been used to move from line 2 to line 3. However eigenvectors w, and w, corresponding to eigenvalues of a

symmetric matrix are orthogonal (if the eigenvalues are different), or can be orthogonalised (if the vectors happen to share an equal repeated value). The
product in the final line is therefore zero; there is no sample covariance between different principal components over the dataset.

Another way to characterise the principal components transformation is therefore as the transformation to coordinates which diagonalise the empirical

sample covariance matrix.

In matrix form, the empirical covariance matrix for the original variables can be written
QxX'X =WAWT

The empirical covariance matrix between the principal components becomes

WQW o WWAW W= A

where A is the diagonal matrix of eigenvalues A, of XX A is equal to the sum of the squares over the dataset associated with each component k, that

i 2 2
I8, Ay = 2 820 = X (X - W)

Dimensionality reduction |edit)

The transformation T = X W maps a data vector X, from an original space of p variables to a new space of p variables which are uncorrelated over the
dataset. However, not all the principal components need to be kept. Keeping only the first L principal components, produced by using only the first L

eigenvectors, gives the truncated transformation

T, = XW,

where the matrix T_ now has n rows but only L columns. In other words, PCA learns a linear transformation ¢ = WE z,z € RF t € RE , where the

columns of p * L matrix W, form an orthogonal basis for the L features (the components of representation ) that are decorrelated.!"®) By construction, of
all the transformed data matrices with only L columns, this score matrix maximises the variance in the original data that has been preserved, while

minimising the total squared reconstruction error || TW™ — T W7 |2 or || X — X |2

Such dimensionality reduction can be a very useful step for visualising and processing high-dimensional datasets,
while still retaining as much of the variance in the dataset as possible. For example, selecting L = 2 and keeping
only the first two principal components finds the two-dimensional plane through the high-dimensional dataset in
which the data is most spread out, so if the data contains clusters these too may be most spread out, and
therefore most visible to be plotted out in a two-dimensional diagram; whereas if two directions through the data
(or two of the original variables) are chosen at random, the clusters may be much less spread apart from each
other, and may in fact be much more likely to substantially overlay each other, making them indistinguishable.

Similarly, in regression analysis, the larger the number of explanatory variables allowed, the greater is the chance
of overfitting the model, producing conclusions that fail to generalise to other datasets. One approach, especially
when there are strong correlations between different possible explanatory variables, is to reduce them to a few
principal components and then run the regression against them, a method called principal component regression.

Dimensionality reduction may also be appropriate when the variables in a dataset are noisy. If each column of the
dataset contains independent identically distributed Gaussian noise, then the columns of T will also contain
similarly identically distributed Gaussian noise (such a distribution is invariant under the effects of the matrix W,
which can be thought of as a high-dimensional rotation of the co-ordinate axes). However, with more of the total
variance concentrated in the first few principal components compared to the same noise variance, the
proportionate effect of the noise is less—the first few components achieve a higher signal-to-noise ratio. PCA thus
can have the effect of concentrating much of the signal into the first few principal components, which can usefully
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A principal components analysis &
scatterplot of Y-STR haplotypes
calculated from repeat-count values for
37 Y-chromosomal STR markers from
354 individuals.

PCA has successfully found linear
combinations of the markers that
separate out different clusters
corresponding to different lines of
individuals' Y-chromosomal genetic
descent.

be captured by dimensionality reduction; while the later principal components may be dominated by noise, and so disposed of without great loss. If the

dataset is not too large, the significance of the principal components can be tested using parametric bootstrap, as an aid in determining how many principal

components to retain./'*)
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Singular value decomposition |[edit]
Main article: Singular value decomposition

The principal components transformation can also be associated with another matrix factorization, the singular value decomposition (SVD) of X,
X =Uxw?

Here Z is an n-by-p rectangular diagonal malrix of positive numbers gy, called the singular values of X; U is an n-by-n matrix, the columns of which are
orthogonal unit vectors of length n called the leit singular vectors of X; and W is a p-by-p matrix whose columns are orthogonal unit vectors of length p and
called the right singular vectors of X.

In terms of this factorization, the matrix XX can be written
X'x =wes'vTuzw’
=Wz'zW’
~ 2
—WEWT
a -2
where 33 is the square diagonal matrix with the singular values of X and the excess zeros chopped off that satisfies 3} = %7 . Comparison with the
eigenvector factorization of XTX establishes that the right singular vectors W of X are equivalent to the eigenvectors of XX, while the singular values Oy
of X are equal to the square-root of the eigenvalues A, of XX,
Using the singular value decomposition the score matrix T can be written
T=XW
=USW'W
=Ux
so each column of T is given by one of the left singular vectors of X multiplied by the corresponding singular value. This form is also the polar
decomposition of T.
Efficient algorithms exist to calculate the SVD of X without having to form the matrix XX, s0 computing the SVD is now the standard way to calculate a

principal components analysis from a data matrix@@n ne2ded] \ynjags anly a handiul of components are required.

As with the eigen-decomposition, a truncated »n * L score matrix T, can be obtained by considering only the first L largest singular values and their singular
vectors:

T;=UZ =XW_

The truncation of a matrix M or T using a truncated singular value decomposition in this way produces a truncated matrix that is the nearest possible matrix
of rank L to the original matrix, in the sense of the difference between the two having the smallest possible Frobenius norm, a result known as the Eckart—
Young theorem [1936].

Further considerations |[edit)

The singular values (in E) are the square roots of the eigenvalues of the matrix XTX. Each eigenvalue is proportional to the portion of the "variance” (more
correctly of the sum of the squared distances of the points from their multidimensional mean) that is associated with each eigenvector. The sum of all the
eigenvalues is equal to the sum of the squared distances of the points from their multidimensional mean. PCA essentially rotates the set of points around
their mean in order 1o align with the principal components. This moves as much of the variance as possible (using an orthogonal transformation) into the
first few dimensions. The values in the remaining dimensions, therefore, tend to be small and may be dropped with minimal loss of information (see below).
PCA is often used in this manner for dimensionality reduction. PGA has the distinction of being the optimal orthogonal transformation for keeping the
subspace that has largest "variance" (as defined above). This advantage, however, comes at the price of greater computational requirements if compared,
for example, and when applicable, to the discrete cosine transform, and in particular to the DCT-1l which is simply known as the "DCT". Nonlinear
dimensionality reduction techniques tend to be more computationally demanding than PCA.

PCA is sensitive to the scaling of the variables. If we have just two variables and they have the same sample variance and are completely correlated, then
the PCA will entail a rotation by 45° and the "weights" (they are the cosines of rotation) for the two variables with respect to the principal component will be
equal. But if we multiply all values of the first variable by 100, then the first principal component will be almost the same as that variable, with a small
contribution from the other variable, whereas the second component will be almost aligned with the second original variable. This means that whenever the
different variables have different units (like temperature and mass), PCA is a somewhat arbitrary method of analysis. (Different results would be obtained if
one used Fahrenheit rather than Celsius for example.) Pearson's original paper was entitled "On Lines and Planes of Closest Fit to Systems of Points in
Space" - "in space" implies physical Euclidean space where such concerns do not arise. One way of making the PCA less arbitrary is to use variables
scaled so as to have unit variance, by standardizing the data and hence use the autocorrelation matrix instead of the autocovariance matrix as a basis for
PCA. However, this compresses (or expands) the fluctuations in all dimensions of the signal space to unit variance.

Mean subtraction (a.k.a. "mean centering”) is necessary for performing classical PCA to ensure that the first principal component describes the direction of
maximum variance. If mean subtraction is not performed, the first principal component might instead correspond more or less to the mean of the data. A
mean of zero is needed for finding a basis that minimizes the mean square error of the approximation of the data.l'®!

Mean-centering is unnecessary if performing a principal components analysis on a correlation matrix, as the data are already centered after calculating
correlations. Correlations are derived from the cross-product of two standard scores (Z-scores) or statistical moments (hence the name: Pearson Product-
Moment Correlation). Also see the article by Kromrey & Foster-Johnson (1998) on "Mean-centering in Moderated Regression: Much Ado About Nothing".
Since covariances are correlations of normalized variables (Z- or standard-scores) a PCA based on the correlation matrix of X is equal to a PCA based on
the covariance mairix of Z, the standardized version of X.

PCA is a popular primary technique in pattern recognition. It is not, however, optimized for class separability.['al However, it has been used to quantify the
distance between two or more classes by calculating center of mass for each class in principal component space and reporting Euclidean distance
between center of mass of two or more classes.!'”] The linear discriminant analysis is an alternative which is optimized for class separability.
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Jadon, S. (16. marts 2018). Introduction to Different Activation Functions for Deep Learning. Hentet
fra medium.com: https://medium.com/@shrutijadon/survey-on-activation-functions-for-
deep-learning-9689331ba092
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Max Pooling . (u.d.). Hentet fra paperswithcode: https://paperswithcode.com/method/max-pooling
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the universal approximation theorem. (26. marts 2023). Hentet fra deep-mind: https://www.deep-
mind.org/2023/03/26/the-universal-approximation-theorem/
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Visualizing the Loss Landscape of a Neural Network. (30. december 2020). Hentet fra Math for
Machines: https://mathformachines.com/posts/visualizing-the-loss-landscape/
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Shah, D. (26. januar 2023). Cross Entropy Loss: Intro,
Applications, Code. Hentet fra v7labs :
https://www.v7labs.com/blog/cross-entropy-loss-guide
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